Characterization of slow traps in MOS interfaces of TiN/Y2O3/SiGe gate stacks ⁰ T.-E. Lee, K. Toprasertpong, M. Takenaka and S. Takagi The University of Tokyo, Faculty of Engineering

E-mail: leete@mosfet.t.u-tokyo.ac.jp

1. Introduction

One of the critical issues of SiGe MOSFETs, promising as a CMOS channel material, is the formation of high-quality gate stacks. We have demonstrated the SiGe MOS interfacial properties with low interface trap density (D_{it}) over a wide range of Ge contents by using TiN/Y₂O₃ gate stacks with a TMA treatment [1]. However, the slow traps properties in the SiGe MOS interfaces have not been fully studied yet. In this work, we present the impacts of the Ge content of SiGe on the density (ΔN_{st}) and properties of slow traps in TiN/Y2O3/SiGe MOS interfaces. Based on the experimental results, the characteristics and a possible origin of the slow traps in SiGe MOS interfaces are discussed.

2. Experiment

TiN/Y2O3/SiGe /p-Si MOS capacitors with a TMA pre-treatment and PMA at 450°C were prepared. A simple and effective method to estimate ΔN_{st} from MOS capacitors, shown in Fig. 1, has been proposed for GeO_x-based Ge MOS interfaces [2]. Here, ΔN_{st} was estimated by the amount of the voltage hysteresis between forward and backward C-V sweep as a function of the maximum effective oxide field (E_{ox}) , defined by $(V_g-V_{FB})/CET$, where V_{FB} means the flat band voltage. The cycle measurement with same V_{stop} and increasing V_{start} (Sequence I), was performed for the extraction of electron ΔN_{st} as a function of E_{ox} , whereas the measurements with same Vstart and increasing V_{stop} was performed for the extraction of hole ΔN_{st} . The measurements with changing the hold time under a given V_{stop} and V_{start} (Sequence II), were performed for the extraction of ΔN_{st} as a function of the hold time, which was varied from 1, 10, 100 and to 999 s. Here, C-V measurements with the different holding time at V_{start} and V_{stop} were performed for the extraction of electron and hole ΔN_{st} , respectively.

3. Results and Discussion

Fig. 2(a) and (b) show ΔN_{st} of Si_{0.51}Ge_{0.49} MOS interfaces for holes and electrons as a function of E_{ox} and V_{start}/V_{stop} hold time, respectively. ΔN_{st} for holes and electrons increases with an increase in the Ge content. The hole and electron ΔN_{st} of GeO_x/Ge MOS interfaces has also been plotted as the reference [2]. The Eox and hold time dependencies are similar between the GeO_x/Ge MOS and Y₂O₃/Si_{0.51}Ge_{0.49} MOS interfaces. Fig. 3 shows the acceleration factor, (a) the slope of $log(\Delta N_{st})$ -log(E_{ox}), γ_1 , and (b) the slope of $log(\Delta N_{st})$ -log(hold time), γ_2 , as a function of Ge content of SiGe. The increase in γ_1 with higher Ge contents suggests that higher Ge contents lead to broader energy distributions of defects responsible for trapping near Ec and E_v . On the other hand, the slight increase of γ_2 with higher Ge contents could also be explained by the broader energy distribution, allowing carriers to trap into defect locating at a bit higher energy than E_F through a thermal-activation process [3], illustrated in Fig. 4.

In order to study a possible origin of slow traps, the SiGe MOS interfaces were analyzed by TEM and EDX, revealing the same IL thickness between Si_{0.78}Ge_{0.22}, Si_{0.68}Ge_{0.32} and Si_{0.51}Ge_{0.49} MOS interfaces and the higher amount of GeOx in AlSiGeOx-based ILs with higher Ge contents. Fig. 5 (a) and (b) show the hole and electron ΔN_{st} at E_{ox} of 6MV/cm and at the hold time of 999s, respectively, as a function of the amount of GeO_x in ILs, estimated by XPS. Good correlation between ΔN_{st} and the amount of GeO_x indicates that Ge-O bonds can induce slow traps in ILs, which is suggested by the fact that the inclusion of Ge atoms into SiO2 networks weakens the network and tends to generate vacancy-related defects [4].

4. Conclusions

Electron and hole ΔN_{st} has been found to increase with higher Ge contents of SiGe. A possible origin of the slow traps in the Y2O3/SiGe MOS interfaces is attributable to vacancy-related defects in ILs, whose energy level is close to E_{c} and $E_{\text{v}},$ formed by incorporation of Ge-O bonds.

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR1332, Japan and a Grant-in-Aid for Scientific Research (17H06148) from MEXT. References [1] T.-E. Lee et al., VLSI Tech. (2019) 100-101 [2] M. Ke et al., IEDM (2018) 791 [3] D. L. Lile et al., J. Appl. Phys. 54 (1983) 260 [4] G. Pacchioni et al., Physical Review B 56.12 (1997) 7304

Fig. with same V_{stop} and V_{start} . The $Si_{0.51}Ge_{0.49}$ MOS interfaces. hold time is varied from 1, 10, 100 and 999s, respectively.

1 (a) Cycle measurement Fig. 2 (a) Hole and electron $\triangle N_{st}$ as with same V_{stop} and increasing a function of (a) electron field and V_{start} (b) Hold time measurement (b) V_{start} and V_{stop} hold time of

Fig. 5 (a) Hole and electron $\triangle N_{st}$ at E_{ox} of 6MV/cm and (b) Hole and electron $\triangle N_{st}$ when hold time is 999s as a function of percentage of GeOx in SiGeOx.