Twisted 二層グラフェン/h-BN 接合における特異な電場スクリーニング

Layer specific anomalous screening (LSAS) in twisted bilayer graphene/h-BN junctions 東大生研¹,物材機構²,阪大理³, CREST-JST⁴ ⁰瀬尾 優太¹,増渕 覚¹,守谷 頼¹, 渡邊 賢司²,谷口 尚^{1,2},越野 幹人³,町田 友樹^{1,4}

IIS Univ. Tokyo¹, NIMS², Osaka Univ.³, CREST-JST⁴, ^oYuta Seo¹, Satoru Masubuchi¹,

Rai Moriya¹, Kenji Watanabe², Takashi Taniguchi^{1, 2}, Mikito Koshino³, and Tomoki Machida^{1, 4}

E-mail: yu-seo@iis.u-tokyo.ac.jp

金属トップゲート/h-BN/Twisted 二層グラフェン ($\theta_{TBG} \sim 0.6^\circ$) /h-BN/グラファイトバックゲート 構造 (Fig. 1(e)) において、トップゲート電圧 (V_{TG}) およびバックゲート電圧 (V_{BG}) を用いたキャ リア変調を行いながら Twisted 二層グラフェン(TBG)の電気伝導測定を行った。測定温度 T=1.6 K においてバックゲート電圧を印加してもキャリア変調できない現象 (Layer specific anomalous screening : LSAS) [1]が V_{TG} の値によらず特定の V_{BG} の範囲 (-0.05 V < $V_{BG} < 0.05$ V) で観測された (Fig. 1(a), (f))。トップゲート電圧印加に対してはこのような振る舞いは見られなかった。温度依存 性を調べたところ、測定温度の上昇に伴い LSAS の観測される領域は小さくなり T=10 K 付近で LSAS は消滅したが、LSAS が消滅した後も T=70 K 付近までゲート電圧印加 V_{TG} , V_{BG} に対するキ ャリア変調のされ方の変化が観測された (Fig. 1(b)-(d))。また、B=11 T の面直磁場を印加した状 態でも LSAS は保持された (Fig. 1(g))。二層グラフェン/h-BN モアレ超格子でも垂直電界の印加に より LSAS が観測されており[1]、ヒステリシスを伴う強誘電性が主張されているが、本 TBG 素子 ではヒステリシスは観測されていない。本講演では観測された LSAS の特徴とその機構やバンド 構造について議論する予定である。 [1] Z. Zhang *et al.*, Nature **588**, 71-76 (2020).

Fig. 1 LSAS in dual-gated twisted bilayer graphene/h-BN junctions.