Thickness dependence of Ti underlayer on ordering of CoPt on Si substrates

°Ryo Toyama¹, Shiro Kawachi^{2,3}, Jun-ichi Yamaura^{2,3}, Youichi Murakami^{2,3}, Hideo Hosono², and Yutaka Majima^{1,2}

¹ Laboratory for Materials and Structures, Tokyo Institute of Technology, ² Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³ Institute of Materials Structure Science, KEK E-mail: toyama.r.ab@m.titech.ac.jp

Pt-based binary alloy of CoPt with $L1_0$ chemical ordered phase shows strong perpendicular magnetocrystalline anisotropy and large coercivity (H_c), which leads to application to spintronic devices such as magnetoresistive random access memory and ultrahigh-density hard disk drives. We have reported the formation of $L1_0$ -ordered CoPt on Si/SiO₂ substrates using electron-beam (EB) evaporation and rapid thermal annealing (RTA).^{1,2)} The $L1_0$ -ordered CoPt showed a maximum out-of-plane H_c of 15 kOe, which exhibited isolated grain structures due to weak adhesion between CoPt and SiO₂ surface of the substrates.³⁾

To enhance adhesion of L_{1_0} -ordered CoPt on Si/SiO₂ substrates, an introduction of an adhesion layer such as Ti is one of the options. However, we have found that, in the film with a 3-nm-thick Ti underlayer after RTA at 900 °C in a vacuum, L_{1_2} -ordered CoPt₃ was formed, showing a small in-plane H_c of 500 Oe.² Therefore, fabrication conditions such as Ti underlayer thickness should be optimized in order to realize the formation of L_{1_0} -ordered CoPt even in the presence of a Ti underlayer.

In this study, we demonstrate the formation of L_{10} -ordered CoPt on Si substrates in the presence of a Ti underlayer by tuning the Ti underlayer thickness.⁴⁾ Co/Pt multilayer thin films with a Ti underlayer with different thicknesses were fabricated on Si/SiO₂ substrates by EB evaporation and were annealed by RTA. Their crystal structures were characterized by grazing incidence X-ray diffraction (GI-XRD). In the film with a 3-nm-thick Ti underlayer, L_{12} -ordered CoPt₃ was confirmed together with Co-rich *A*1-disordered CoPt by GI-XRD. In contrast, when the thickness of the Ti underlayer decreased to less than 3 nm, superlattice peaks corresponding to L_{10} -CoPt *001* and *110* were observed. These results indicate that L_{10} -ordered CoPt can be formed on Si substrates even in the presence of a Ti underlayer by tailoring the Ti underlayer thickness.

This study was partially supported by MEXT Elements Strategy Initiative to Form Core Research Center (Grant No. JPMXP0112101001).

- 1) R. Toyama, S. Kawachi, S. Iimura, J. Yamaura, Y. Murakami, H. Hosono, and Y. Majima, *Mater. Res. Express* 7, 066101 (2020).
- R. Toyama, S. Kawachi, J. Yamaura, Y. Murakami, H. Hosono, and Y. Majima, Jpn. J. Appl. Phys. 59, 075504 (2020).
- 3) R. Toyama, S. Kawachi, J. Yamaura, Y. Murakami, H. Hosono, and Y. Majima, in preparation.
- 4) R. Toyama, S. Kawachi, J. Yamaura, Y. Murakami, H. Hosono, and Y. Majima, in preparation.