Speciation Analysis of Iodine-129 in Seawater by Coprecipitation and Accelerator Mass Spectrometry The Univ. of Tokyo¹, °(D)Yuanzhi Qi¹, Hiroyuki Matsuzaki¹ E-mail: qi.yz@outlook.com

As a long-lived radioisotope of iodine, ¹²⁹I is produced by both natural reactions and human nuclear activities. Because of the ubiquity and high water-solubility, ¹²⁹I can be used as a kind of oceanographic tracer. Base on the different cyclic processes of iodine species, speciation analysis of ¹²⁹I in seawater can provide useful information on the transportation of water masses. A simple and rapid coprecipitation method combined with accelerator mass spectrometry (AMS) measurement was improved for inorganic speciation analysis of ¹²⁹I in seawater. Iodide was successfully separated from seawater just by adding a certain amount of carrier (0.6 mg) and 100 mg/L Ag⁺ with the separation efficiency high to 95%. When the concentration differences of ¹²⁹I⁻ and ¹²⁹IO₃⁻ are huge, slight crossover during the separation process can introduce significant analytical error. In order to remove the remaining I in supernatant seawater in last step, AgI is coprecipitated with Ag₂SO₃, AgCl, and AgBr after adding 0.6 mg carrier, 100 mg/L Ag⁺ and 0.3 mmol/L Na₂SO₃ at pH about 4.0, which decrease the crossover between ¹²⁹I⁻ and ¹²⁹IO₃⁻ to 0.05%. Iodate in the supernatant was converted to iodide by Na₂SO₃ at pH 1-2 and then separated by coprecipitation, with the 91% separation efficiency. ¹²⁹I of total inorganic iodine was analyzed by the same procedure as for iodate. Ag₂SO₃, AgCl and AgBr in the coprecipitate was removed by washing with 3 mol/L HNO₃ and diluted NH₄OH, and the AgI precipitate was obtained for ¹²⁹I AMS measurement. Two seawater samples collected from the Indian Ocean were analyzed by this improved method, and the results showed that the concentration of ${}^{129}I^{-}$ is significantly high than the concentration of ${}^{129}IO_3^{-}$ in seawater. Three seawater samples at different depths of the Pacific Ocean were used to analyze ¹²⁹I of total inorganic iodine by this method and solvent extraction and back extraction method, and the results showed no significant difference (p=0.05 for t-test) between two methods.