Rapid thermal annealing による合金化を用いた熱電フルホイスラー合金 Fe₂TiAI 薄膜の形成と評価

Formation and characterization of thermoelectric full-Heusler Fe₂TiAl alloy thin films using rapid thermal alloying process

東工大電気電子¹,東工大未来研²,^O(M1)廣木 源¹,高村 陽太¹, (M2)松下 瑛介¹, 菅原 聡², 中川 茂樹¹

Dept. of Elect. Elec. Eng., Tokyo Tech¹, FIRST, Tokyo Tech.², °H. Hiroki¹, Y. Takamura¹, E. Matsusita¹, S. Sugahara², and S. Nakagawa¹ E-mail: hiroki.h.aa@m.titech.ac.jp

【はじめに】低温排熱や体温を用いたマイクロ熱電発電技術は IoT デバイスや IoH デバイスなどの電源に 応用が期待されている[1,2]. 最近, 100℃以下の温度領域で極めて高い ZT(~6)を示すホイスラー合金 (Fe₂V_{0.8}W_{0.2}Al)が報告された[3]. これまで我々はホイスラー合金を構成する元素の薄膜による積層構造 を Rapid thermal annealing (RTA)によって合金化することで高品質のホイスラー合金薄膜を形成する方法 を開発してきた[4]. この方法では極めて規則度の高いホイスラー合金薄膜を絶縁体上に形成できる. 本 方法をハーフメタル・ホイスラー合金に応用した場合では1か月程度熱処理を行ったバルク材料と同程度 の極めて高い規則度が得られる[5]. 今回, この方法を熱電フルホイスラー合金である Fe₂TiAl に応用し, 本方法の有効性を検証した.

【形成・評価方法】Fig. 1 に RTA による Fe₂TiAl の形成方法を示す. 熱酸化した Si 基板上に対向ターゲット式スパッタ法で Ti と Fe, Al をこの順でそれぞれ膜厚 43 nm, 57 nm, 40 nm だけ真空一貫成膜した. その後, RTA を温度(*T_A*) 400-900℃, 時間 4 分の条件で高純度窒素雰囲気下で行った. RTA 後の形成膜の組成と構造はそれぞれ蛍光 X 線解析(XRF)と X 線回折(XRD)によって分析した.

【評価結果】XRFから、形成した薄膜は概ね化学量論組成であった(Fe:Ti:Al=54:23:23 (mol%)). Fig. 2(a)に様々な T_A で形成した試料の XRD パターンを示す. T_A の上昇に伴い、各層単体のピークが消失し、相互拡散による合金化が生じていることがわかる. $T_A \ge 700^\circ$ Cでは析出物由来の回折も確認されるが、Fe₂TiAl(220)回折が現れた. Fe₂TiAl の他の回折面が得られなかったことから柱状多結晶などのテクスチャ構造だと考えられる. 析出物が最も少なかった $T_A = 800^\circ$ Cの試料の格子定数は 0.583 nm となり、バルク値[6]とほぼ同じ値となった. Fig. 2(b)に $T_A = 800^\circ$ Cの試料に対して角度を煽りながら測定した XRD パターンを示す. (200)、(111)回折による超格子線が観測されたことから L2₁ 規則構造を有する Fe₂TiAl 結晶相の形成が確認できた. また、 $T_A = 800^\circ$ Cの試料の磁化測定から、その飽和磁化値[7]がバルク材料のものとほぼ等しい値(約 18 emu/cc)となったことからも、Fe₂TiAl 相の形成が支持される.

【まとめ】RTA による合金化法は熱電フルホイスラー合金の形成にも有効であることを明らかにした. 【謝辞】XRF による組成分析は東工大オープンファシリティセンター分析部門を利用した.

Fig. 1 Rapid thermal alloying process for full-Heusler Fe_2TiAl alloy thin films.

Fig. 2 (a) XRD patterns of RTA-treated Si-sub./SiO₂/Ti/Fe/Al samples formed at various temperatures (T_A). (b) Fe₂TiAl (111), (200), and (400) diffraction patterns for RTA-formed Fe₂TiAl films at $T_A = 800^{\circ}$ C where ψ is the tilted angle of the sample surface.

[1] 塩津他, 第 67 回応用物理学会春季学術講演会, 13a-D511-2, 2020. [2] Y. Shiotsu *et al.*, IEEE Trans. Elec. Dev., **67**, 3834 (2020). [3] B. Hinterleitner *et al.*, Nature, **576**, 85 (2019). [4] Y. Takamura *et al.*, J. Appl. Phys., **103**, 07D719 (2008). [5] Y. Takamura *et al.*, J. Appl. Phys., **105**, 07B109 (2009). [6] K.H.J. Buschow *et al.*, J. Magn. Mater., **25**, 90 (1981). [7] E. Shreder *et al.*, J. Phys-Condens. Mater., **20**, 1 (2008).