Ag で部分置換した Mg₂Sn の結晶構造と熱電特性

The Crystal Structures and Thermoelectric Properties of Ag-doped Mg₂Sn

東北大学¹ ⁰黄 志成¹, 林 慶¹, 齋藤 亘¹, 宮﨑 讓¹

Tohoku Univ.¹, °Zhicheng Huang¹, Kei Hayashi¹, Wataru Saito¹, Yuzuru Miyazaki¹

E-mail: hayashik@crystal.apph.tohoku.ac.jp

Thermoelectric (TE) materials, which can directly convert waste heat into electricity, are expected to play a significant role in future energy utilization. The performance of TE materials is evaluated in terms of the dimensionless figure of merit, $zT = S^2 \sigma T/\kappa$, and power factor $PF = S^2 \sigma$, where *S*, σ , *T*, and κ are the Seebeck coefficient, electrical conductivity, absolute temperature, and thermal conductivity, respectively. Mg₂Sn is a promising mid-temperature TE material consisting of earth-abundant, low cost, and less-toxic elements. Recently, we successfully prepared Mg₂Sn single-crystal ingots with Mg vacancy (V_{Mg}) by melting method under Ar pressure ^[1]. The V_{Mg} has an effect of lowing lattice thermal conductivity (κ_{lat}) of Mg₂Sn, which is lower than those of the Mg₂Sn polycrystals ever reported. Furthermore, we prepared n-type Mg₂Sn_{1-x}Sb (x = 0.005, 0.01, and 0.02) single crystal ingots and investigated the effect of point defects and Sb doping on their crystal structures and TE properties ^[2]. Due to the higher carrier mobility and lower lattice thermal conductivity than those of the Mg₂Sn_{1-x}Sb_x polycrystals, the maximum *zT* value of 0.72 at 650 K was achieved for the Mg₂Sn_{0.99}Sb_{0.01} single crystal ingot.

As for p-type Mg₂Sn, we prepared Mg₂Sn_{1-x}Ga_x single crystal ingots and investigated their TE properties. Although we obtained relatively low κ_{lat} for Mg₂Sn_{0.98}Ga_{0.02} ingots, the *zT* value (*zT*_{max} = 0.17@450 K) were still now high enough because of the low carrier concentration (5.92×10¹⁹ cm⁻³) ^[3]. In this work, Ag-doped Mg₂Sn ingots with V_{Mg} were prepared by the melting method, whose morphology and TE properties were investigated with a particular emphasis on effects of doped Ag atoms and V_{Mg}. The maximum *PF* (*PF*_{max} = 1.5 mW·m⁻¹·K⁻²) was achieved for Mg_{1.99}Ag_{0.01}Sn at 300 K, and the *PF* decreased with the temperature increased. This may be due to the influences of the secondary phase in the Mg_{1.99}Ag_{0.01}Sn ingots. We will try to prepare Mg_{2(1-x)}Ag_{2x}Sn single crystal by controlling the cooling rate during preparation, and investigate their V_{Mg} fraction, carrier concentration, and TE properties, which will be reported in the presentation.

This work was partly based on collaborative research between Sumitomo Metal Mining Co., Ltd., and Tohoku University, which is part of the Vision Co-creation Partnership.

- [1] W. Saito et al., Sci. Rep. 10 (2020) 2020.
- [2] W. Saito et al., ACS Appl. Mater. (2020) DOI: 10.1021/acsami. 0c17462.
- [3] Z. C. Huang et al., ACT&SACT2020 AO0027.