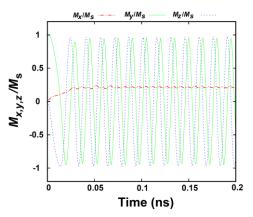
低飽和磁化材料をフリー層とする biquadratic 結合を用いた スピントルクオシレータの基礎検討

Investigation of spin torque oscillator under the biquadratic coupling in the free layer with small saturation magnetization


九大シス情¹ 岐阜大工² 産総研^{3 O}黒川 雄一郎¹, 山田 啓介², 谷口 知大³, 堀池 周¹, 田中 輝光¹, 湯浅 裕美¹

Kyushu Univ.¹, Gifu Univ.², AIST³, ^OYuichiro Kurokawa¹, Keisuke Yamada², Tomohiro Taniguchi³, Shu Horiike¹, Terumitsu Tanaka¹, Hiromi Yuasa¹ E-mail: ykurokawa@ed.kyushu-u.ac.jp, yamada_k@gifu-u.ac.jp

[Introduction] Biquadratic coupling is one of magnetic interlayer exchange couplings, which acts on ferromagnetic (FM) layers consisted of FM/Interlayer/FM trilayer [1]. In this study, we investigated the spin torque oscillation (STO) in the presence of the biquadratic coupling in the top layer with a small saturation magnetization M_s by numerical simulations.

[Experiment] A micromagnetic model was used in the simulations [2]. The magnetization motion was calculated using the Landau-Lifshitz-Gilbert (LLG) equation with the spin torque term. In the calculations, we assumed a trilayer with top FM (small $M_s = 50$ kA/m)/Interlayer/Pinned FM layer (Co₉₀Fe₁₀), and the magnetization of Co₉₀Fe₁₀ was pinned in *x*-direction by IrMn. The thicknesses of each layer in the trilayer were 2 nm.

[Results] Figure 1 shows time evolution of magnetization components $M_{x_0y,z}/M_s$ in the top layer when the current density *j* and the biquadratic coupling coefficient J_2 are -1.1 $\times 10^{11}$ A/m² and -0.6 mJ/m² without the external magnetic field. As shown in Fig. 1, the $M_{y,z}/M_s$ are clearly oscillated. The value of STO's frequency f_s estimated by Fast Fourier Transform is ~67 GHz. The value of f_s is increased with decreasing the value of J_2 , whereas the f_s is zero when J_2 is 0 mJ/m², because the biquadratic field H_{bq} is very large (~ 12 T when J_2 is -0.6 mJ/m²), leading to generate a high frequency of STO in the small M_s . These results were agreed

Fig. 1 Time evolution of magnetization components $M_{x,y,z}/M_s$ of the top layer when current density *j* is -1.1 × 10¹¹ A/m² under external magnetic field $\mu_0 H_{app} = 0$ mT.

with the analytical theory base on the LLG equation under the assumption of axially symmetric system. [Acknowledgements] This study was supported in part by the JSPS KAKENHI under Grant No. 20K05255, Ogawa Science and Technology Foundation, and the Hattori Hokokai Foundation.

[1] G. Nagashima et al., J. Appl. Phys. 126, 093901 (2019).

[2] Y. Nakatani, et al., Jpn. J. Appl. Phys. 28, 2485 (1989).