Investigation of spin-orbit torque induced magnetization switching in Ta-O/Co-Fe-B heterostructures

°T. V. A. Nguyen,^{1,2,3}S. DuttaGupta,^{1,2,4}Y. Saito,³K. V. De Zoysa,⁴

S. Fukami,^{1,2,3,4} S. Ikeda,^{1,2,3} T. Endoh^{1,2,3,4,5}, Y. Endo^{1,2,5}

¹CSIS, Tohoku Univ., ²CSRN, Tohoku Univ., ³CIES, Tohoku Univ., ⁴RIEC, Tohoku Univ.,

⁵Grad. School of Eng., Tohoku Univ.,

E-mail: anh@ecei.tohoku.ac.jp

Spin-orbit torque (SOT) induced magnetization switching in oxide/ferromagnetic heterostructures has attracted immense interest owing to its potential for the development of high-performance spintronics devices, realized by tuning the surface oxidization [1]. Since both of the Slonczewski-like (H_{SL}) and the field-like (H_{FL}) effective fields would contribute to the magnetization reversal, a detailed understanding and manipulation of H_{SL} and H_{FL} in these structures are important. Herein we selected typical Ta-O/Co-Fe-B heterostructures, and studied the change in H_{SL} and H_{FL} by controlling the thickness of Ta-O layer.

From the thermally oxidized Si substrate's side, Ta-O (t_{Ta-O} nm)/Co₂₀Fe₆₀B₂₀ (1.2 nm)/MgO (1.3 nm)/Ta (1.0 nm) stacks with various values of Ta-O layer's thickness (t_{Ta-O}) were fabricated by DC/RF sputtering. Ta-O layer was formed by naturally oxidizing Ta layer at 0.3 Pa. The effective fields, H_{SL} and H_{FL} were evaluated using an extended harmonic Hall measurement for Hall bar devices.

The sign and absolute values ($|H_{SL(FL)}|$) of the effective fields are consistent with those in the previous work on Ta/Co-Fe-B/MgO stacks [2]. Figure 1 shows t_{ta-O} dependence of $|\mu_0H_{SL(FL)}|/I$, where *I* is the total current applying to the device (a), and H_{FL}/H_{SL} in comparison with that of a non-oxidized stack (b). Both of $|\mu_0H_{SL}|/I$ and $|\mu_0H_{FL}|/I$ increase and converge to a certain value as t_{Ta-O} increases, suggesting a bulk effect, such as the spin Hall effect, as an origin of SOT. On the other hand, $|H_{FL}|$ is larger than $|H_{SL}|$ and their ratio increases with t_{Ta-O} , as shown in Fig. 1 (b), suggesting an interfacial contribution such as the Rashba-Edelstein effect (REE), if one assumes that H_{FL} originates from REE [3]. These results are of importance to understand the SOT induced magnetization switching, and to design the spintronic devices using oxidized HM/FM systems.

The authors acknowledge the Core Research Cluster program; the JSPS

KAKENHI Grant Number 19K23583, 19H00844; and CSRN; and Cooperative Research Project from CSIS, Tohoku Univ. This research has been partly carried out at the Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ.

References: [1] H. An et al., Nat. Commun. 7, 13069 (2016). [2] C. Zhang et al., Appl. Phys. Lett. 103, 262407, (2013). [3] Y. Du et al, Phys. Rev. Appl. 13, 054014, (2020).