単一 H₂O@C60 分子トランジスタの磁気トンネル伝導特性 Magnetotunneling Properties of H₂O@C60 Single Molecule Transistors 東大生研・ナノ量子機構¹,東北大物理²,京大化研³ ^o杜 少卿¹、伊藤遥香²、橋本克之²、橋川祥史³、村田靖次郎³、平山祥郎²、平川一彦¹ ^IIS/INQIE, Univ. of Tokyo, ²Dept. of Physics, Tohoku Univ., ³ICR, Kyoto University ^oShaoqing Du¹, Haruka Ito², Katsushi Hashimoto², Yoshifumi Hashikawa³, Yasujiro Murata³, Yoshiro Hirayama², Kazuhiko Hirakawa¹

E-mail: sqdu@iis.u-tokyo.ac.jp

Endohedral fullerenes, as a class of hybrid molecules formed by encapsulation of metallic species or light molecules inside fullerene cages, exhibit unique properties owing to the presence of encapsulated atoms/molecules and their hybridization via electron transfer. Particularly, the encapsulation of a single H₂O molecule inside a buckyball [1] has attracted widespread attention due to its huge impact on the research of single water molecules. In this work, we have investigated magnetotransport of H₂O@C₆₀ single molecule transistors.

As shown in Fig. 1(a), we captured a single $H_2O@C_{60}$ molecule in the gold nanogap electrodes and fabricated a single molecule transistor (SMT) structure [2]. By performing transport measurements, we have obtained a Coulomb stability diagram of a $H_2O@C_{60}$ SMT, as shown in Fig. 1(b) (only the V_{DS} -positive side is shown). As we increased the magnetic field up to B = 15 T, we observed an energy splitting (~1.2 meV) in the ground states, as shown in Fig. (c). Although the origin of the splitting energy is not clear at present, we attribute it to a Zeeman splitting of electrons in the fullerene cage. More detail will be discussed at the conference.

Figure 1 (a) Schematic of a single molecule transistor (SMT). **(b)** Coulomb stability diagram of a single-H₂O@C₆₀ SMT at B = 0 T. **(c)** Coulomb stability diagram of a single-H₂O@C₆₀ SMT at B = 15 T.

References

[1] K. Kurotobi and Y. Murata, Science 333, 613 (2011).

[2] S. Q. Du, et al., The 80th JSAP Autumn Meeting, Hokkaido University, 20a-E308-8 (2019).