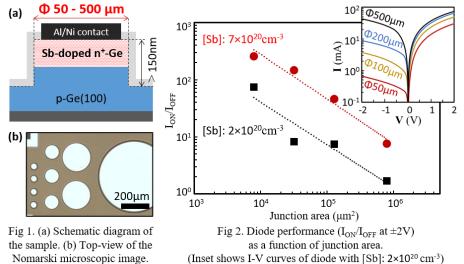
Realization and Characterization of Vertical Ge n⁺/p Structure Towards Nanowire Transistor Applications

NIMS - MANA¹, Univ. of Tsukuba - Applied Physics² °Rahmat Hadi SAPUTRO^{1,2}, Ryo MATSUMURA¹, Naoki FUKATA^{1,2} E-mail: s1920355@s.tsukuba.ac.jp

Introduction


The excellent transport properties of Ge make it a prime candidate for next-generation CMOScompatible electronic devices. A crucial problem in making n-MOSFET is the difficulties to form high quality n^+ Ge for the source/drain ^[1-2]. In this research, we are focusing on the study of vertically structured Ge n^+/p junction fabricated by MBE. Realization of vertical Ge p-n junction is promising for the development of nanowire transistor. Here, the effect of junction scaling to the performance of n^+/p diodes are investigated by a conventional current-voltage measurement.

Experimental Section

An epitaxial Ge layer (100 nm) with high Sb doping ([Sb]: 2×10^{20} and 7×10^{20} cm⁻³, measured by SIMS) was deposited on p-Ge (100) substrate using an optimized MBE condition. Then, the samples are patterned using photolithography, followed by dry etching in CF4 plasma to form vertical n⁺/p junction structure shown in Fig.1(a). Sizes and shapes of the fabricated diodes are shown in Fig.1(b).

Results and Discussion

Well-behaved Ge p-n diodes were confirmed by the I-V curve measurements ($I_{ON}>I_{OFF}$). In Fig.2, the increase of diode performance (I_{ON}/I_{OFF} ratio) by nearly 2-orders of magnitude was obtained by reducing the junction area by 0.01 times. This improvement is the result of significant I_{OFF} reduction as shown in the inset of Fig.2. The high I_{OFF} in larger samples indicates the high current leakages, which remarkably suppressed in smaller samples. Top performance of $I_{ON}/I_{OFF} = 2.6 \times 10^2$ was obtained on samples with higher Sb concentration ([Sb]: 7×10^{20} cm⁻³) and might possibly increases by further scaling down of junction area. [1] W. Kim et al. *IEEE Trans. Elec. Dev.* 61, (2014). [2] D.V. Yurasov et al. *J. Cryst. Growth* 491, (2018).

© 2021年 応用物理学会