熱励起エバネッセント波のパッシブ THz 近接場分光計測 Spectroscopic THz near-field measurement of a thermal evanescent wave 東大工¹, 東大生研², NICT³, JST さきがけ⁴, ^O佐久間 涼子¹, 林 冠廷², 金 鮮美³, 木村 文信^{1,2}, 梶原 優介 1,2,4

Univ. Tokyo, Ryoko Sakuma, Kuan-Ting Lin, Sunmi Kim, Fuminobu Kimura, and Yusuke Kajihara E-mail: sakumar@iis.u-tokyo.ac.jp

物質表面上には電子振動等のミクロなダイナ ミクスが起因し発生する熱励起エバネッセント 波(波長 8 – 20 µm)が局在している[1]. 熱励起エ バネッセント波の性質は物質や状態により異な るため、分光計測の実現による物質上のミクロな ダイナミクスの観察が期待されている.近年,熱 励起エバネッセント波を直接計測するため,外部 光源を用いないパッシブ型の THz 近接場顕微鏡 (s-SNOM)が開発された[2]. しかし, THz s-SNOM には波長選択機能が無いため,熱励起エバネッセ ント波の分光計測は困難であった.

本研究では、パッシブ型の THz 近接場分光顕 微鏡を構築することで、ミクロな回路上の絶対温 度分布計測や活性化細胞の観察等,様々な分野に おけるパッシブ分光計測の実現を目指している. 本分光顕微鏡はブレーズド回折格子からなる回 折格子型分光系を基本とした. 波長 8-16 μm に おいて第一次回折光の回折効率が 60 %以上にな るよう作製し[3],回折格子をピエゾステージに より回転させることで波長を選択する.

開発した THz 近接場分光顕微鏡を用いて近接 場信号計測を行った. 図 2(a)に SiC/Au のマイク ロパターン試料の顕微鏡写真,図2(b)と(c)に波長

14 µm と15 µm において検出した近接場信号とト ポグラフィを示す.本試料はSiC 基板上にAuを 蒸着(100 nm 程度)したものである. 近接場信号は 図 2(a)中の矢印に沿って計測した.本分光顕微鏡 は,熱励起エバネッセント光強度が極めて低いの に加え特定波長を選択するため,入射光強度がノ イズレベルを下回ることが懸念されていた.しか し、本計測において Au 上と SiC 上で判別可能な 近接場信号が複数波長で確認できた. Au 上の局 所エネルギ密度は SiC 上よりも大きいため, 図の ように Au 上では強い近接場光が検出される.

以上のように、構築した THz 近接場分光顕微 鏡を用いて,複数波長における近接場分光を実現 した. 熱励起エバネッセント波の分光検出は前例 がないため、パッシブ検出原理の解明や絶対温度 計測等の近接場分光を応用したミクロなダイナ ミクス検出が近い将来期待できる.今後は広波長 帯域における近接場分光を実現し,幅広い試料を 対象とした近接場分光顕微鏡の実現を目指す.

参考文献

- [1] K. Joulain, et. al., Surf. Sci. Rep., 57, (2005) 59-112.
- [2] Y. Kajihara, et. al: A sensitive near-field microscope for thermal radiation, Rev. Sci. Instrum., 81, (2010) 033706.
- [3] R. Sakuma, et.al. IEEE Photn. Tech. Lett., 31(15), (2019) 1261-126.

Capacitance encoder ZnSe window SiC Ge objectiv 30 µm Probe Sample

Fig.1 A schematic diagram of passive spectroscopic

LHe 4.2 K

3color-CSIP Al mirro

Piezo roto

Grating

Pinhole

Fig.2 (a) A microscopic image of the SiC/Au sample. (b, c) Near-field signal and topography at wavelength (b) 14 μm and (c) 15 μm.

300 (b) 300 (C) 0.05 0.05 (a) 250 200 Ē 200 002 150 051 Lobography [200 0.0 aph 150 Au 0.02 100 100 0.01 0.01 50 0 L 0 50 __0 40 30 20 30 40 10 20 Wavelength [um] Wavelength [µm]

03-252