シンクロトロン X 線光電子分光法による Al2O3/NO2/H-ダイヤモンドヘテロ界面での窒素種の観察

Observation of Nitrogen Species at Al₂O₃/NO₂/H-diamond Interfaces Using Synchrotron

X-ray Photoemission Spectroscopy

佐賀大院工¹,佐賀大シンクロトロン光応用研究センター²

⁰ニロイ チャンドラ サハ¹, 高橋和敏², 今村真幸²,嘉数 誠¹

Dep. Electrical Electronic Eng., Saga Univ.¹, Synchrotron Light Application Center, Saga Univ.²

^ONiloy Chandra Saha¹, Kazutoshi Takahashi², Masaki Imamura², Makoto Kasu¹

E-mail: ^Okasu@cc.saga-u.ac.jp

1.Introduction

Diamond possesses desired properties for the power electronic devices, such as wide bandgap, high breakdown field, and high thermal conductivity. H-diamond exhibits negative electron affinity and the exposure of H-diamond to 2% NO2 increases the hole sheet concentration up to 2.3 \times 10^{14} cm⁻². [1] However, whether nitrogen (N) species exist on the NO₂/H-diamond surface or the interface and how the decomposed NO₂ molecule works as an acceptor on the H-diamond surface remained controversial. Geis et al., reported NO3instead of NO₂⁻ and C-N bonds by FTIR. [2] In this study, synchrotron x-ray photoemission spectroscopy (XPS) was performed to investigate the Al₂O₃/NO₂/H-diamond interfaces.

2. Fabrication and Measurement Process

The measured sample consists of a 2 nm-thick Al₂O₃ layer deposited NO₂-exposed H-diamond on (001) surface orientation. NO₂-exposed H-diamond was not exposed to air before Al₂O₃ layer deposition as well as 2-nm-thick Al₂O₃ layer was adjusted to photoelectron escaping from the interface without sputtering. XPS measurements were carried out at BL-13 line of the Saga Synchrotron Light Source.

3. Experimental Results and discussion

Two N peaks corresponding to C-NH₂ (399.43 eV) and NO₃⁻ (407.45 eV) were confirmed at the Al₂O₃/NO₂/(001)H-diamond interface as shown in Fig. 1(a). In interface sensitive measurements at the emission angle θ_e of 0°, N 1s/O 1s was 2.26% [Fig. 1(a)], which was higher than of 1.45% for the surface sensitive measurements at θ_e of 60° [Fig. 1(b)]. Thus, the N-species were localized at the

interface. C-NH₂ and NO₃⁻ originated from the decomposition of NO₂ and N₂O₄, respectively, at the interface after accepting electron diamond. The estimated interfacial C-NH₂ bond density is 5.8×10^{14} cm⁻².

Fig. 1 Core-level photoemission spectra of O 1s and N 1s of the Al₂O₃/NO₂/ (001) H-diamond interface measured at θ_e of (a) 0° and (b) 60°.

Acknowledgements

This work was supported by the JSPS Grants-inaid for Scientific Research (No. 19H02616).

References

- M. Kubovic, M. Kasu, H. Kageshima, and F. Maeda, Diamond Rel. Mater. 19, 889 (2010).
- [2] M. W. Geis, T. H. Fedynyshyn, M. E. Plaut, T. C. Wade, C. H. Wuorio, S. A. Vitale, J. O. Varghese, T. A. Grotjohn, R. J. Nemanich, M. A. Hollis, Diamond Rel. Mater. 84, 86 (2018).