透過型電子顕微鏡での空孔形成を用いた2次元高密度 NV アンサンブル

の作製

Fabrication of 2D High-Density NV Ensemble Using Vacancies Created by a Transmission Electron Microscope

(1 早大, 2 量研, 3 筑波大, 4 早大材研) 〇早坂京祐¹,金久京太郎¹,立石哲也¹,齋藤悠太¹,谷井孝至¹,小野田忍²,磯谷順一³, 榎本心平⁴,河野省三⁴,川原田洋^{1,4}

(¹Waseda Univ., ²QST, ³Univ. of Tsukuba, ⁴ZAIKEN)

Kyosuke Hayasaka¹, Kyotaro Kanehisa¹, Tetsuya Tatsuishi¹, Yuta Saito¹, Takashi Tanii¹, Shinobu Onoda², Junichi Isoya³, Shinpei Enomoto⁴, Shozo Kono⁴, Hiroshi Kawarada^{1,4} E-mail: kyosuke.fse@akane.waseda.jp

ダイヤモンド中のNVアンサンブルは磁気センサや量子情報通信への応用が期待される。特に、 2 次元に存在する NV センター同士がエンタングル状態を形成するとき、磁気センサの磁気感度 が約 200 倍向上することが予測されている[1]。また 2 次元に配列させた NV アンサンブルで構成 される量子コンピュータも提案されている[2]。これらの実現には1.0×10¹²[cm⁻²]以上の高密度な 2 次元 NV アンサンブルの作製が必要である[1]。そこで、我々は窒素終端(111)ダイヤモンド上に 高純度ダイヤモンドを堆積することで、2 次元かつ高密度に NV センターが存在する NV アンサ ンブルの作製を試みた[3]。しかしながら、NV センターの面密度は3×10⁹[cm⁻²]程度に留まって いる。一方で、XPS 測定結果から求めた窒素終端(111)ダイヤモンドの窒素面密度は4×10¹⁴[cm⁻²] であった。窒素面密度に対して NV センターの面密度が少ないことから、空孔密度が少ないこと

る。この窒素デルタ dope 層に集中して原子空孔を導入することで2次元 NV アンサンブルの密度増加が見込まれる。そこで、透過型電子顕微鏡(TEM)を用いて局所的に原子空孔を導入し、2次元 NV アンサンブルの密度増加を試みた。

本研究では HPHT 法で作製された II a(111)基板に対して、分子線 エピタキシー装置で窒素ラジカル暴露[4]を行うことにより窒素終 端化処理を施した。次に MPCVD 法により、窒素終端化された表面 に高純度(111)ダイヤモンド薄膜を約 100 nm ホモエピタキシャル成 長させ、2 次元 NV アンサンブル試料を作製した。その後、試料の チャージアップ対策として、試料表面に水素終端処理を施した後、 加速電圧 300 keV の TEM(JEM-3010)を用いて直径 2 μ m、10 μ m の円 領域に1.0 × 10¹⁸ cm⁻²~1.0 × 10²² cm⁻²の dose 量の電子をそれぞれ 30 μ m、60 μ m の間隔をあけて照射した。

その結果、電子線照射領域で発光強度の増加が確認された(Fig.1)。ゆえに電子線照射領域において NV 面密度が増加した。また、電子線照射を行っていない領域、および各電子 dose 量での NV 面密度とコヒーレンス時間 T_2 を比較した(Table 1)。NV 面密度は電子線照射前の面密度 2.8×10^9 cm⁻² と比較して最大で 100 倍程度 $(3.0 \times 10^{11}$ cm⁻²) 増加した。一方で、 T_2 は電子線照射 有無で大きな差がなかった。したがって、磁気感度はセンシングに寄与する NV センターの個数 N と T_2 について $\sqrt{NT_2}$ に比例する[5]ため、TEM により電子線照射を行った領域において磁気感度の向上が期待できる。

Table1. Relationship between electron doses and NV area density

electron irradiation	electron dose	NV area density	T2
area (μm)	(cm^{-2})	(cm^{-2})	(μs)
-	w/o irradiation	$2.8{ imes}10^9$	3.7
10	$1.0{ imes}10^{18}$	1.6×10^{11}	4.6
10	$1.0{\times}10^{19}$	$1.9{ imes}10^{11}$	3.8
10	$1.0{\times}10^{20}$	$1.9{\times}10^{11}$	3.8
10	$1.0{\times}10^{21}$	2.1×10^{11}	-
2	$1.0{\times}10^{20}$	$2.0{ imes}10^{11}$	3.8
2	$1.0{\times}10^{21}$	$3.0{\times}10^{11}$	2.9
2	$1.0{\times}10^{22}$	1.1×10^{11}	3.0

[謝辞]本研究は Q-LEAP の支援を受けて行われた。CFM 装置の立ち上げに協力いただいた Liam P. McGuinness 博士と Fedor Jelezko 教授に感謝いたします。

[1] S. Choi, M. D. Lukin, et al., arxiv:1801.00042 (2018).

[2] N. Y. Yao, M. D. Lukin, et al., Nat Commun. 2012 Apr 24;3:800 (2012).

[3] 金久 京太郎、川原田 洋, 応用物理学会秋季学術講演会, 19p-E312-3(2019).

[4] T. Kageura, H. Kawarada, et al., APEX, 10, 5:055503 (2017).

[5] D. Budker, M. Romalis, Nature Phys 3, 227–234 (2007).