Title: Formation of Nitrogen-Vacancy centers in nanodiamonds: Dependence on Size and Origin

Frederick T.-K. So^{1,2,3}, Alexander I. Shames⁴, Daiki Terada^{2,3}, Takuya Genjo^{2,3}, Hiroki Morishita¹, Izuru Ohki¹, Takeshi Ohshima^{3,5}, Shinobu Onoda^{3,5}, Hideaki Takashima⁶, Shigeki Takeuchi⁶, Eiji Ōsawa⁷, Norikazu Mizuochi¹, Ryuji Igarashi^{3,8}, Masahiro Shirakawa^{2,3} and Takuya F. Segawa^{2,10} E-mail: so.tzekit.5c@kyoto-u.ac.jp

¹Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.

²Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
³Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
⁴Department of Physics, Ben-Gurion University of the Negev, Israel
⁵Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
⁶Department of Electronic Science and Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto 615-8510, Japan
⁷NanoCarbon Research Institute Ltd.
⁸National Institute for Radiological Sciences, National Institutes for Quantum and Radiological Science and Patient Science and Patient Science Science Research Institute Ltd.

Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan

⁹JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

¹⁰Laboratory for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland

Negatively-charged nitrogen-vacancy (NV⁻) defects in nanodiamonds are a promising nano-scale probe for quantum sensing with excellent bio-compatibility. To maximize the potential of this versatile tool, the smallest type of nanodiamonds that carries NV⁻ defects are highly desirable and are available in the form of 5-nanometer detonation nanodiamonds (DNDs). Previously, we discovered that the common NV⁻ formation mechanism may not be applied to DNDs.^[1] To investigate the reasons behind this phenomenon, the NV⁻ formation process is studied experimentally in a series of nanodiamonds with different sizes and origin (DNDs, nanonized high-pressure-high-temperature diamonds), and additional simulations complete the mechanistic understanding.

This work was supported by MEXT Q-LEAP (No. JPMXS0120330644).

 D. Terada, T. F. Segawa, A. I. Shames, S. Onoda, T. Ohshima, E Osawa, R. Igarashi, M.Shirakawa, ACS Nano 13, 6461 (2019).