Thickness dependence of ferromagnetism in Cr₃Te₄ epitaxial thin films grown by molecular beam epitaxy

Dept. Appl. Phys., Univ. Tokyo¹, RIKEN CEMS², ^o Yue Wang¹, Shun Kajihara¹, Masaki Nakano^{1,2}, Satoshi Yoshida¹, Hideki Matsuoka^{1,2}, Kyoko Ishizaka^{1,2}, Yoshihiro Iwasa^{1,2} E-mail: wangyue@ mp.t.u-tokyo.ac.jp

The discoveries of intrinsic ferromagnetism in atomically-thin van der Waals crystals have opened up a new research field enabling fundamental studies on magnetism at two dimensional (2D) limit as well as development of magnetic van der Waals heterostructures. To date, a variety of 2D ferromagnetism has been explored with different electronic properties, such as insulating ferromagnets Cr₂Ge₂Te₆ [1] and CrI₃ [2], and metallic ferromagnet Fe₃GeTe₂ [3] and V₅Se₈ [4]. However, 2D ferromagnets with high Curie temperature $(T_{\rm C})$ was still missing, until recent discovery of room temperature ferromagnetism in monolayer VSe₂ [5], although there have been many discussions and enigma on the origin of its ferromagnetism. One promising candidate is chromium telluride, which has been known to possess $T_{\rm C}$ ranging from 220 K to 340 K depending on the chromium intercalation level. Recently we have succeeded in growing atomically-thin chromium telluride epitaxial thin films on insulating sapphire substrates by molecular beam epitaxy (MBE), and identified its phase as Cr₃Te₄ based on the detailed analysis on the structural and magnetic properties (Fig. 1). We found that $T_{\rm C}$ of the as-grown samples were about 160 K, but it increased up to 310 K by post-growth annealing (Fig. 2). Moreover, very interestingly, we found that those with- and without-annealing samples show different thickness dependence of $T_{\rm C}$. In this presentation, we will discuss those results in detail. [1] C. Gong et al., Nature 546, 265 (2017); [2] B. Huang et al., Nature 546, 270 (2017); [3] Z. Fei et al., Nat. Mat. 17, 778 (2018) [4] M. Nakano et al., Nano Letters, 19, 8806 (2019). [5] M. Bonilla et

al., Nat. Nanotechnol. 13, 289 (2018)

Fig. 2. Increase of $T_{\rm C}$ by postgrowth annealing in Cr₃Te₄.