バブルフリー転写法による高品質ファンデルワールス積層構造の作製

Fabrication of high-quality van der Waals heterostructures

by the bubble-free transfer technique

物材機構¹, 群馬大², 東京電機大³, ⁰岩崎 拓哉¹, 渡辺 英一郎¹, 津谷 大樹¹, 守田 佳史², 中払 周¹, 若山 裕¹, 渡邊 賢司¹, 谷口 尚¹, 森山 悟士³

NIMS¹, Gunma Univ.², Tokyo Denki Univ.³, °Takuya Iwasaki¹, Eiichiro Watanabe¹, Daiju Tsuya¹,

Yoshifumi Morita³, Shu Nakaharai¹, Yutaka Wakayama¹, Kenji Watanabe¹, Takashi Taniguchi¹, and Satoshi Moriyama³

E-mail: IWASAKI.Takuya@nims.go.jp

近年、ファンデルワールス積層構造において、材料の組み合わせ・積層角度・層間距離等の自由度を制御することによって様々な量子輸送/デバイス機能の発現が報告され、大きな注目を集めている[1]。これらの特性を詳細に調べる/デバイス開発に応用するためには、高品質な積層構造作製技術が必須となる。従来の作製方法では材料間に気泡が入ってしまい、素子構造・材料品質が制限されてしまう問題点がある。本研究では上記の問題を解決するために開発した、積層構造界面への気泡の侵入を阻止する「バブルフリー転写法」について報告する[2]。

本転写法では、 SiO_2/Si 基板上に用意した材料にポリマースタンプを接触させ、ステージ温度を調整し材料をピックアップ/ドロップする。転写に用いるスタンプの表面にゲルシートを用いて突起形状を作製し、材料をスタンプ接触面の端でピックアップすることにより、ドロップする際の材料間に接触角度($\theta=15\sim19^\circ$)を付ける($Fig.\ 1a$)。ステージ高さの電動制御により低速・一定方向に材料をドロップすることで、気泡のない領域を広く得ることが可能である($Fig.\ 1b$)。

この方法で作製した六方晶窒化ホウ素(hBN)/二層グラフェン/hBN 積層構造に Cr/Au エッジコンタクト電極を取り付け、ホールバー素子に加工し輸送特性を測定した(Fig. 1c)。その結果、温度 1.6~K において電子移動度~ $50~m^2V^{-1}s^{-1}$ と非常に高い値や明瞭な量子ホール効果を示し(Fig. 1d)、積層構造が高品質であることが確認できる。本転写法はグラフェン、hBN、 $MoTe_2$ 、 ReS_2 といった層状物質をピックアップし、 SiO_2/Si 基板、薄膜トランジスタ上、Ag 膜[3]、Au 膜、 MoS_2 剥片など様々な対象にドロップすることができ、幅広く応用可能である。

謝辞: 本研究は JSPS 科研費 19K15385 の助成を受けて行われました。

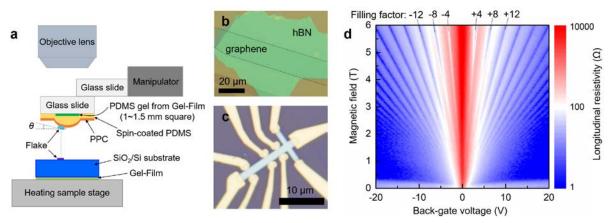


Fig. 1. (a) Schematic illustration of the home-built transfer system (PDMS: polydimethylsiloxane, PPC: polypropylene carbonate). (b,c) Optical image of a typical hBN/graphene stack fabricated by the bubble-free transfer technique (b) and the hBN/bilayer graphene/hBN Hall bar device (c). (d) Landau fan diagram of the device shown in (c).

[1] K. S. Novoselov et al., Science 353, 461 (2016). [2] T. Iwasaki et al., ACS Appl. Mater. Interfaces 12, 8533 (2020). [3] S. Suzuki et al., Adv. Funct. Mater. 2007038 (2020).