Investigation of impact of orientation on electronic properties in epitaxially grown MoO₂ films

Tokyo Tech., Dept. Chem. Sci. Eng.¹, MCES² ^o Shuxin Zhang¹, Takuto Soma¹, Akira Ohtomo^{1,2} E-mail: zhang.s.ai@m.titech.ac.jp

[Introduction] The structural instability of rutile compounds has been investigated intensively to reveal correlations between structural and electronic phase transitions, as represented by a metal-insulator transition in VO₂. Recent discovery of superconductivity in strained rutile-type RuO₂ films further draws interests of lattice engineering for exploring exotic properties [1]. In order to investigate impact of lattice strain on phase instability, orientation control is a starting point. In this study, we focus on MoO_2 with distorted rutile-type structure. The epitaxial growth and transport properties of MoO_2 with various orientations are reported.

[Experiment] Epitaxial MoO₂ thin films were prepared by using pulsed-laser deposition (PLD) on α -Al₂O₃ (0001), TiO₂ (100), TiO₂ (001), and TiO₂ (110) substrates. During the deposition, the substrate temperature was kept at 800 °C, and the oxygen pressure was maintained at 1×10⁻⁴ Torr.

[Results and discussion] Figure 1 shows x-ray diffraction (XRD) profiles of as-deposited MoO₂ films on various substrates. Single-phase MoO₂ thin films with (100), (010), ($\overline{2}$ 01), and (011) orientations were obtained. The films grown on α -Al₂O₃ (0001) and TiO₂ (100) substrates exhibited relatively higher crystallinity. Figure 2a shows temperature dependence of resistivity for all the films shown in Fig. 1. Among them, the film grown on TiO₂ (001) substrate exhibited the highest conductivity and the highest MR (~10% at 1.9 K and 9 T, see Fig. 2b). Further details in structural and electronic properties will also be discussed.

[1] M. Uchida, et al., Phys. Rev. Lett. 125, 147001 (2020).

Fig. 1 XRD profiles of MoO₂ films grown on various substrates. The substrate reflections are marked with star symbol.

Fig. 2 Temperature dependence of (a) resistivity for MoO_2 films grown on various substrates and (b) MR for the ($\overline{2}01$) oriented MoO_2 film grown on TiO₂ (001) substrate.