エピスケーリングを施した GaInSb-HEMT の特性評価と遅延時間解析

Device Performances and Delay Time Analysis of GaInSb-HEMTs Scaled for Epitaxial Structures

東理大基礎工¹, 情報通信研究機構² °岸本尚之^{1,*}, 礒前雄人¹, 林拓也¹, 國澤宗真¹, 渡邊一世^{2,1}, 山下良美², 町田龍人², 原紳介², 笠松章史², 遠藤聡¹, 藤代博記^{1,**} Tokyo Univ. of Science¹, National Institute of Info. & Com. Tech.² °N. Kishimoto^{1,*}, Y. Isomae¹, T. Hayashi¹, M. Kunisawa¹, I. Watanebe^{1,2}, Y. Yamashita², R. Machida², S. Hara², A. Kasamatsu²,

A. Endoh¹ and H.I. Fujishiro^{1,**} E-mail: *8119524@ed.tus.ac.jp, **fujisiro@rs.tus.ac.jp

<u>はじめに</u>: これまで我々は、III-V 族化合物半導体の中でも電子有効質量の小さな Sb 系高電子移動度トランジスタ(HEMT)である Al_{0.25}In_{0.75}Sb/InSb-HEMT(チャネル層厚(d_c) 20 nm、スペーサ層厚(d_s) 5 nm)^[1]において遮断周波数(f_T) 316 GHz を、Al_{0.40}In_{0.60}Sb/Ga_{0.22}In_{0.78}Sb-HEMT($d_c = 20 \text{ nm}, d_s = 5 \text{ nm}$)^[2]において $f_T = 214 \text{ GHz}$ をそれぞれ報告した。本研究では、Al_{0.40}In_{0.60}Sb/Ga_{0.22}In_{0.78}Sb-HEMTのエピ結晶における d_c 及び d_s 短縮によるゲート・チャネル間距離のスケーリング効果について、DC・RF 特性評価及び遅延時間解析によって明らかにした。

実験・結果:作製した1段リセスゲート構造 GaInSb-HEMT(ゲート長(L_o) 35-400 nm)は、 (1) $d_c = 20 \text{ nm}, d_s = 5 \text{ nm}$ (Standard), (2) $d_c = 10 \text{ nm}, d_s = 5 \text{ nm}$ (Thin-channel) $\mathbb{R} \mathbb{C}$ (3) $d_c = 10 \text{ nm}, d_s = 5 \text{ nm}$ (Thin-channel) $\mathbb{R} \mathbb{C}$ 20 nm、d_s = 3 nm (Thin-spacer) で、HEMT 作製に使用したヘテロ構造は (100) GaAs 基板上に MBE 成長した。Fig. 1 は L_g = 35 nm における I_{ds} - V_{gs} 特性で、3 試料とも良好なピンチオフを示す とともに、Thin-spacer は最大の Ids = 403 mA/mm を示した。これは Thin-spacer のソース抵抗とド レイン抵抗の和 (R_s+R_d) が 0.74 Ω mm で、Standard (1.06 Ω mm) や Thin-channel (1.47 Ω mm) と 比べて約30-50%低減したためであった。Fig.2は $V_{ds} = 0.5 \text{ V}$ における $f_T \ge g_m \mathcal{O} L_g$ 依存性で、 Thin-spacer は、 $L_g = 70$ nm で相互コンダクタンス (g_m) 0.81 S/mm を、 $L_g = 35$ nm で $f_T = 301$ GHz をそれぞれ達成し (V_{gs} = -0.3 V)、GaInSb チャネル HEMT においても InSb チャネル HEMT と同 程度の特性を実証した。RF 特性を詳細に議論するため遅延時間解析^[3,4]を行った結果(Fig. 3)、 いずれの試料も真性の遅延時間でゲート直下の電子走行時間を示す Tiransit の割合が最も大きく、 d_s 短縮(5→3 nm)や d_c 短縮(20→10 nm)により τ_{transit} は減少した。これは τ_{transit} がゲート直下 の平均電子速度(vave)の影響を受ける^[3]ことから、ゲート・チャネル間距離の短縮による vave 増 大によるものと考えられる。一方、寄生遅延時間(τ_p)とチャネル充電時間(τ_{cc})の和は d_cを短 縮すると増大し、 d_{s} を短縮すると減少した。 $au_{p} = C_{ed}(R_{s}+R_{d})$ はゲート・ドレイン間容量(C_{ed})よ りもR_s+R_dに強く依存していた。また、t_{cc}についてはd_c短縮によって増加した。これはt_{cc}が電 子移動度(µ)や電子濃度、Idsと関係があり[4]、dc短縮はラフネス散乱によるµの減少[5]、かつ Rs+Raの増大により Ias が減少したためと考えられる。一方 ds 短縮はリモートクーロン散乱により μ が減少する^[5]が、3 試料の中で Ids は最大であったため、Standard と同じ τcc を示したと考えられ る。以上の結果、Thin-spacerの GaInSb-HEMT において、遅延時間がゲート・チャネル間距離の 短縮と Rs+Rdの低減によって減少したため、スケーリングの効果を検討するための3種類のエピ 構造の中で最も高いfr=301 GHzを示したことを定量的に明らかにした。

参考文献: [1] N. Oka et al., Proc. TWHM2017, no. 9-6. [2] K. Osawa et al., Proc. TWHM2019, no. 6-4.

[3] T. Enoki et al., IEEE EDL 11, 502 (1990). [4] T. Enoki et al., IEICE Trans. Electron. E76-C, 1402 (1993).

[5] N. Kishimoto et al., Proc. CSW2019, no. MoP-A-2. [6] K. Shinohara et al., IEEE EDL 25, 241 (2004).

謝辞:本研究の一部は JSPS 科研費 20H02211 の助成により実施した。

and InGaAs-HEMT with $L_g = 30 \text{ nm}^{[6]}$.