RF スパッタリングで成膜した CuGaS2 薄膜の結晶性に Ag2S バッファ層が与える影響

Effects of Thin Ag₂S Buffer Layers on CuGaS₂ Thin Films Grown with RF Sputtering

東大院総合文化¹,東大先端研²,東大院工³,^Oグプタ・アビシェーク^{1,2},アーサン・ナズムル²,

金明玉^{2,3}, 岡田至崇^{2,3} Grad. Arts & Sci. UTokyo¹, RCAST UTokyo², Grad. Eng. UTokyo³,

^oAbhishek Gupta^{1,2}, Nazmul Ahsan², Myeongok Kim^{2,3}, Yoshitaka Okada^{2,3}

E-mail: abhishek@g.ecc.u-tokyo.ac.jp

[Introduction] CuGaS₂ (CGS) is one of the potential compound materials for thin-film photovoltaics because of its high optical absorption coefficient and adjustable wide band gap [1]. The effect of Ag precursor layers has been reported effective in improving the crystalline qualities of the narrow bandgap counterpart, CuInGaSe₂ [2]. CGS band gap of 2.46 eV is in the green part of the visible spectrum and requires improvement of its crystalline quality for potential application for high energy photon absorptions or intermediate band solar cell applications [3]. This research investigates the effect of a thin buffer layer of Ag₂S below CGS on its crystallinity.

[Method] Thin buffer layers of Ag₂S and thick CGS layers were deposited on quartz substrates using radio frequency (RF) magnetron sputtering (Fig.1). The deposition took place under S-rich environment at substrate temperature of 400 $^{\circ}$ C with 1.4 Pa of pressure and 20 W of RF power. The deposited samples were cooled down to room temperature under vacuum environment. X-Ray diffractions and UV Visible light absorbance were measured to study the crystalline nature and optical properties.

[Results and Discussion] The observed X-Ray diffraction data show increase in the intensity of CGS (112) plane diffraction peak for CGS sample grown on Ag_2S buffer layer as seen in Fig.2. This might be attributed to the improved surface of Ag_2S for

Fig.1 Sample structures on Quartz substrate:
(a) 20 nm-thick Ag₂S, (b) 1µm-thick CGS, and
(c) 1µm-thick CGS on 20 nm-thick Ag₂S

crystalline growth of CGS. Experimentally, an increase in the bandgap of CGS 2.35 eV to 2.45 eV was observed with Ag_2S buffer (Fig.3).

[Conclusion] This study focused on the effects of Ag_2S buffer layers on the crystalline growth of CGS thin films. This was observed with an improvement in crystalline quality associated with an increase in the bandgap for CGS with Ag_2S buffer layer compared to reference CGS without the buffer.

[References]

M. Kim *et al.*, Thin Solid Films **743**, 139043 (2022).
 K. Kim *et al.*, Sol. Energy Mater Sol. Cells **146**, 114 (2016).

[3] A. Martí et.al., J. Appl. Phys. 103, 073706 (2008).

Fig.3 Tauc plot for CGS (Yellow), CGS/Ag₂S (Green)