ミスト化学気相成長法コランダム構造酸化ガリウム薄膜の ガス種による双晶形成への影響

Impact of Gas Type on Formation of Twin Structure in the Growth of α-Ga₂O₃ by Mist Chemical Vapor Deposition 工学院大¹,東大²⁰(M₂)山田梨詠¹,小林篤²,上野耕平² 関口敦¹,尾沼猛儀¹,本田徹¹,藤岡洋²,山口智広¹

Kogakuin Univ.¹, Univ. of Tokyo², ^ORie Yamada¹, Atsushi Kobayashi², Kohei Ueno², Atsushi Sekiguchi¹, Takeyoshi Onuma¹, Tohru Honda¹, Hiroshi Fujioka², Tomohiro Yamaguchi¹ E-mail: cm21057@g.kogakuin.jp

[はじめに]

近年. コランダム構造酸化ガリウム(α-Ga₂O₃) はバンドギャップエネルギーが大きいことか ら深紫外検出器への応用に期待されている [1]. α-Ga₂O₃はミスト CVD 法[3]や HVPE 法[4] などの成長手法を用いて得られている. ミス ト CVD 法は、超音波振動子によって霧状にし た溶液をキャリアガスによって熱した炉に送 り込む簡便な手法である.しかし、ミスト CVD 法によるα-Ga₂O₃の成長メカニズムは不 十分である.サファイア基板上に直接成長した α-Ga₂O₃において面内方位制御された単結晶 膜の報告がなされているが[4]、双晶がわずか に混在して成長することも報告されている[3, 5]. 本研究では、α-Al₂O₃ 基板上α-Ga₂O₃のミス トCVD 成長においてガス種(O2またはN2)によ る双晶の形成への影響を検討した.

[実験方法]

ミスト CVD 法により, $(0001)\alpha$ -Al₂O₃ 基板上に Ga₂O₃ 薄膜を 1 時間かけて成長した. 出発原料 には Ga(C₅H₇O₂)₃ を用いた. 出発原料に超純水 で 0.05mol/L の濃度の溶液になるように調製し た後, 36% の濃塩酸を加えて塩酸濃度を 0.28mol/L となるようにした. 成長温度を 500 °C とし、キャリアガスと希釈ガスを共に O₂ ま たは N₂を使用した. 結晶構造の評価に XRD ϕ スキャン測定を行った.

[実験結果と考察]

Fig. 1, 2に(0001) α -Al₂O₃ 基板上にO₂ ガスまた は N₂ ガスを使用して成長した α -Ga₂O₃ 薄膜 10-14の XRD ϕ スキャン測定結果を示す. どち らのサンプルも、 α -Al₂O₃ 基板と同じ角度に α -Ga₂O₃ の 3 本のピークを確認した. しかし、 O₂ガスを使用した場合は、加えて180^o 回転し た 3 本のピークを確認した. この結果から、 ガスの種類は回転ドメインの形成に影響を与 えている.

Fig. 1. XRD ϕ scan pattern for 1014 diffraction for α -Ga₂O₃ grown using O₂ gas. The pattern for α -Al₂O₃ is also shown.

Fig. 2 XRD ϕ scan pattern for $10\overline{1}4$ diffraction for $\alpha\text{-}Ga_2O_3$ grown using N_2 gas. The pattern for $\alpha\text{-}Al_2O_3$ is also shown.

- [1] X. Zhao, et al., Semicond. Sci. Technol. 31, 065010 (2016).
- [2] A. Segura et al., Phys. Rev. Materials. 1, 024604 (2017).
- [3] D. Shinohara and S. Fujita, Jpn. J. Appl. Phys. 47, 9 (2008).
- [4] Y. Oshima et al., Appl. Phys. Express 8, 055501 (2015).
- [5] S. Kim et al., Cryst. Eng. Comm. 24, 3049 (2022).