## 水中光合成による ZnO/CuO ナノフォレストの作製と光機能発現の解明 The origin of opto-functional enhancement in ZnO/CuO nanoforest structure fabricated by submerged photosynthesis

北大電子研<sup>1</sup>, 北大工(院生)<sup>2</sup>, 北大工<sup>3</sup> <sup>0</sup>ジェーム メルバート<sup>1</sup>, 高橋 優樹<sup>2</sup>(D3), 張 麗華<sup>3</sup>, 渡辺 精一<sup>3</sup>

Hokkaido Univ. <sup>O</sup> Melbert Jeem<sup>1</sup>, Yuki Takahashi (D3)<sup>2</sup>, Lihua Zhang<sup>3</sup>, Seiichi Watanabe<sup>3</sup> E-mail: m\_jeem@es.hokudai.ac.jp

When two semiconductors' surface are joint, each of their Fermi energy ( $E_F$ ) levels must equilibrate, leading to interface-induced gap states (IFIGS) or band bending, where the charge neutrality reside ~10meV above the  $E_F$  level. In the case of ZnO/CuO, the charge neutrality theory determines the Schottky barrier height, in which however has been consistently aggravated by interface dipole feature<sup>1</sup>. This is caused by the ionic and/or chemical potentials difference between the lattices, inherited from defects, lattice mismatch, and impurity during its atomic configuration. This research addresses those aspects in order to elucidate the origin of opto-functional properties in ZnO/CuO hetero-nanostructure.

Herein, a hetero-epitaxial ZnO/CuO nanoforest (NFRs) growth was demonstrated by a galvanic submerged photo-synthesis (G-SPSC) method<sup>2,3</sup>, which utilizes light illumination in pure water. The method incorporates both galvanic reactions and photo-induced water splitting for ZnO nanorods growth on a CuO surface. We observed an interesting physical characteristic at the interface: ZnO(001)/CuO(001)

planes linkage were established, even though with 13.62 - 28.15 % local lattice discrepancies along the *c* axis. Further, ternary oxide ZnCuO<sub>2</sub>, zinc interstitial (I<sub>Zn</sub>) and oxygen vacancies (V<sub>0</sub>) were found. Meanwhile, the NFRs exhibited emission at 650 – 700 nm and absorbance at 450 – 500 nm.

To relate those physical characteristics to its optical properties, we conducted a first ZnO/CuO interface *ab initio* calculation. We perceived a prevailing Jahn-Teller distortion from CuO $\rightarrow$ ZnO electrons transfer under equilibrium E<sub>*F*</sub>. Complemented by STEM-VEELS measurements, electrons occupancy at Cu 3*p* was responsible for 2.0 eV peak of the interface absorption coefficient. In particular, an interface dipole under



Fig. 1. Electrons distribution at ZnO/CuO interface.

interface-induced gap states (IFIGS) was clarified, caused by quasi defects zinc antisite ( $Zn_0$ ). This led to an incommensurate charge density (ICCD) for a coherent ZnO(001)/CuO(001) interface (Fig. 1). This is the origin for the opto-functional enhancement of the ZnO/CuO NFRs, where a maximum 12 % IPCE at 550 nm, a 20 % increase from similar NFRs morphology was demonstrated.

J. Tersoff, *Phys. Rev. B*, **30**, 4874-4877 (1984).
Y. Takahashi *et al.*, *Appl. Surf. Sci.*, **489**, 313-320 (2019).
Y. Takahashi *et al.*, *Appl. Mater. Today* accepted (2022).