High temperature stability of MoS₂ probed by combining thermal desorption spectroscopy and atomic layer deposition

O S. H. Li^{1,2}, T. Nishimura², M. Maruyama¹, S. Okada¹ & K. Nagashio²

Univ. Tsukuba¹ & UTokyo²

E-Mail: s2020200@s.tsukuba.ac.jp

Introduction

Defects engineering in 2D materials is crucial to improve the device performance as well as to modify the material properties. Especially for MoS₂, controlling sulfur vacancy has still been intense issue even though many healing processes using adsorbates have already been proposed. This is largely due to the limited understanding on the defect formation. Recently, detailed evolution of sulfur vacancy in MoS₂ on Au and in suspended MoS₂ has been reported by using STM and in-situ TEM during the high temperature annealing in vacuum [1,2]. However, both conditions are different from the standard device circumstances, that is, MoS2 on insulating SiO₂/Si substrate, where oxygen exists around MoS₂. To make matters worse, no measurement method for sulfur vacancy with atomic resolution is available. Here, it is well known that Al_2O_3 during atomic layer deposition (ALD) adsorbed only at the defect sites, which will allow us to detect defect evolution with the assistance of surface topology observed macroscopically by AFM. In this study, we investigate the desorption behavior of species from MoS₂ flake on SiO₂/Si wafer by thermal desorption spectroscopy (TDS) up to elevated temperature of ~1000°C. Subsequently, the defect evolution was traced by 2-nm ALD Al₂O₃.

Experimental

The large amount of molybdenum disulfide flakes was prepared onto clean SiO₂/Si substrate. Then, TDS measurement was carried out from 25°C up to ~1000°C at 20 K/min in UHV. Then, 2-nm Al₂O₃ (10 cycles) was deposited on MoS₂ by ALD, followed by AFM measurement. Alternatively, the structural and electrical changes were inspected for monolayer MoS₂ by Raman and PL measurements after TDS.

Results & Discussion

Fig. 1 shows TDS spectra for M/z = 32 (S, O₂),

Fig. 2 shows the coverage ratio of ALD Al₂O₃ on MoS₂ flakes as a function of maximum TDS temperature. The coverage increased even at 355°C, which is consistent with the detection of SO₂ desorption in TDS. Full coverage is observed after the annealing to 640°C, at which the morphological difference between the step and terrace became blurred, indicating a wide spread defect formation on MoS_2 surface. Fig. 3 shows PL measurements at different maximum TDS temperatures. The exciton peak intensity increased up to ~630°C because O2 chemisorbed at defect sites [3]. However, at ~835°C, it was drastically reduced, and defect-related peak appeared [4]. It should be noted that two distinct Raman peaks in monolayer MoS₂ did not broaden even after annealing up to ~835°C, suggesting that crystallinity of MoS₂ is still preserved.

In summary, ALD-assisted TDS experiment clearly demonstrated defects evolution of MoS_2/SiO_2 system under UHV annealing condition. Surprisingly, MoS_2 shows high temperature stability even on the SiO_2/Si substrate at least up to 630°C. Since S was desorbed as SO_2 at low temperature, the reduction of O_2 around MoS_2 will be the key to prevent from defect formation.

Reference:

- [1] M. Liu, et al., Small 2017, 13, 1602967.
- [2] Q. Chen, et al., Nano lett. 2017, 17, 5502.
- [3] H. Nan, et al., ACS nano 2014, 8, 5738.
- [4] E. Mitterreiter, et al., Nature commun. 2021, 12, 3822.

Fig. 1 TDS Spectrum of bulk MoS₂.

Fig. 2 Coverage ratio of ALD-Al₂O₃ on bulk MoS₂ annealed at different temperatures.

