Annealing temperature dependence of thermo-spin and magnetothermoelectric conversion in Co₂MnGa films on Y₃Fe₅O₁₂ and Gd₃Ga₅O₁₂

NIMS¹, Nagoya Univ.², IMR Tohoku Univ.³, CSRN Tohoku Univ.⁴,

[°]Hayato Mizuno¹, Rajkumar Modak¹, Takamasa Hirai¹, Atsushi Takahagi², Yuya Sakuraba¹,

Ryo Iguchi¹, Ken-ichi Uchida^{1,3,4}

E-mail: MIZUNO.Hayato@nims.go.jp

Magnetic Heusler alloys have been widely studied as promising spintronic and spin-caloritronic materials because they may show half metallic or topological properties [1]. For instance, Co₂MnGa (CMG), a ferromagnetic full Heusler alloy, with the L2₁ ordered phase is known to exhibit the large anomalous Hall and anomalous Nernst effects due to the topological band structure [2,3]. Recent studies show that CMG films with the L2₁ and B2 ordered phases also exhibit the large charge-to-spin current conversion efficiency [4,5]. This finding suggests that CMG is useful for inducing thermo-spin effects, such as the spin Seebeck and spin Peltier effects, by forming CMG films on magnetic insulators, *e.g.*, $Y_3Fe_5O_{12}$ [6,7,8,9]. To clarify the potential of CMG as a spin-caloritronic material, in this study, we have characterized the structural and magnetic properties of CMG films grown on $Y_3Fe_5O_{12}$ and $Gd_3Ga_5O_{12}$ substrates at different annealing temperatures. By means of the lock-in thermography technique [9], we have also investigated the thermospin and magneto-thermoelectric conversion properties in the CMG/Y₃Fe₅O₁₂ and CMG/Gd₃Ga₅O₁₂ hybrid systems. In this talk, we will show the details of the experimental results and discuss the origin of the thermospin and magneto-thermoelectric conversion properties.

- [1] K. Manna, et. al., Nat. Rev. Mater. 3, 244 (2018).
- [2] A. Sakai, et. al., Nat. Phys. 14, 1119 (2018).
- [3] K. Sumida, et. al., Commun. Mater. 1, 89 (2020).
- [4] L. Levia, et. al., Phys. Rev. B 103, L041114 (2021).
- [5] K. Tang, et. al., Appl. Phys. Lett. 118, 062402 (2021).
- [6] K. Uchida, et. al., Nat. Mater. 9, 894 (2010).
- [7] K. Uchida, et. al., Appl. Phys. Lett. 97, 172505 (2010).
- [8] J. Flipse, et. al., Phys. Rev. Lett. 113, 027601 (2014).
- [9] S. Daimon, et. al., Nat. Commun. 7, 13754 (2016).