875 MW/cm² 2568 V 0.68A/mm NO₂ドープダイヤモンド MOSFET 875 MW/cm² 2568 V 0.68A/mm NO₂-Doped Diamond MOSFETs 佐賀大院エ¹, アダマンド並木精密宝石(株)²

ニロイ チャンドラ サハ¹, 金 聖祐², 大石敏之¹, ⁰嘉数 誠¹

Saga Univ.¹, Adamant Namiki Precision Jewel Co., Ltd.²

N. C. Saha¹, S. -W. Kim², T. Oishi¹, ^OM. Kasu¹

E-mail: kasu@cc.saga-u.ac.jp

<u>1. Introduction</u>

Diamond has higher electric breakdown field strength and thermal conductivity than GaN and SiC and is expected as a next-generation semiconductor material for power devices with low power consumption and high efficiency. We have been demonstrating high current and high voltage diamond MOSFETs with NO₂ p-type doping and Al₂O₃ layer on the heteroepitaxial diamond, where voltage handling capability was enhanced to 2608 V using a thick passivation layer [1-2]. In this study, NO₂ doped diamond MOSFET is fabricated on 200hour chemical mechanical planarized (CMP) heteroepitaxial diamond substrate, and MOSFETs exhibit a high available output power of 875 MW/cm².

2. Growth and Fabrication

Diamond MOSFETs were fabricated on 200-hour chemical mechanical planarized (001) heteroepitaxial diamond (Kenzan diamond[®]). Hdiamond was exposed to NO₂ gas and a 16-nm-thick Al₂O₃ layer was deposited on it.

3. Results and Discussion

Figure 1(a) shows the dc output characteristics of a diamond MOSFET. The maximum drain current density ($I_{D,max}$) was measured as 0.68 A/mm, and on-resistance was determined as 50 Ω ·mm. By using the TLM method, contact resistance and sheet resistance were determined as 2.62 Ω ·mm and 3.55 k Ω /sq., respectively. 200 hours of CMP on diamond surface improves the subsurface condition and owing to this reason, devices are exhibiting low resistance. In addition to these, the maximum effective mobility was obtained as 205 cm²/Vs. Figure 1(b) shows the off-state drain current characteristics and the breakdown voltage was 2568 V. The specific on-resistance and lateral breakdown field were determined as 7.54 m Ω ·cm² and 2.3 MV/cm. The MOSFET shows a Baliga's figure of merit (BFOM) of 875 MW/cm². This value is the highest reported for the diamond MOSFETs and about 40% of the maximum value of GaN HEMT.

4. Conclusion

In conclusion, NO₂ doped diamond MOSFET fabricated on 200-hour chemical mechanical planarized heteroepitaxial diamond substrate shows the highest BFOM of 875 MW/cm².

Acknowledgements

This work was supported by the JSPS Grants-inaid for Scientific Research (No. 19H02616).

References

- N.C. Saha, M. Kasu, et al., IEEE Electron Dev. Lett. 41 (2020) 1066.
- [2] N. C. Saha, M. Kasu, et al., IEEE Electron Dev. Lett. 42 (2021) 903.

Fig. 1. (a) DC output characteristics and (b) off-state breakdown voltages of NO₂-doped diamond MOSFET.