Vertical Trench Field-Plated Ga₂O₃ Schottky Barrier Diodes

^oSandeep Kumar¹, Hisashi Murakami², Yoshinao Kumagai², Masataka Higashiwaki¹

National Institute of Information and Communications Technology¹, Tokyo University of Agriculture

and Technology²

E-mail: sandeep@nict.go.jp

Development to enhance breakdown voltage (V_{br}) of β -Ga₂O₃ transistors and diodes have been actively pursued in the last decade. Vertical Ga₂O₃ Schottky barrier diodes (SBDs) with a field plate and a guard ring demonstrated superior device characteristics such as an on-resistance (R_{on}) of 4.7 m Ω cm² and a V_{br} of 1430 V [1]. In this work, Ga₂O₃ SBDs with novel edge termination structures were designed, fabricated, and characterized to understand electric field management for further enhancing the V_{br} with keeping a low R_{on} .

We fabricated three types of Ga₂O₃ SBD structures in this work. Cross-sectional schematics of a conventional field-plated SBD (CFP-SBD), a staircase field-plated SBD (SFP-SBD), and a trench staircase field-plated SBD (TSFP-SBD) are shown in Figs. 1(a)–1(c), respectively. Note that the structures and dimensions were designed using technology computer aided design simulation, and that all the SBDs were simultaneously fabricated on an *n*-Ga₂O₃ drift layer ($N_d - N_a \sim 2 \times 10^{16}$ cm⁻³) grown on an *n*⁺-Ga₂O₃ (001) substrate by halide vapor phase epitaxy.

Forward and reverse DC current density–voltage (*J*–*V*) characteristics of the fabricated SBDs are shown in Figs. 2(a) and 2(b), respectively. The R_{on} and V_{br} of the Ga₂O₃ CFP-SBD, SFP-SBD, and TSFP-SBD were 4.7 m Ω cm² and 977 V, 7.0 m Ω cm² and 1527 V, and 7.6 m Ω cm² and 1662 V, respectively. These results indicate large potential of the novel edge termination structure having a staircase field plate formed on a deep trench filled with SiO₂.

This work was supported in part by Ministry of Internal Affairs and Communications (MIC) research and development (JPMI00316).

[1] C.-H. Lin et al., IEEE Electron Device Lett. 40, 1487 (2019).

Fig. 2. (a) Forward and (b) reverse J-V characteristics.

10000000-005