820 MW/cm² 3326 V 0.42 A/mm 選択ドープダイヤモンド MOSFET 820 MW/cm² 3326 V 0.42 A/mm Modulation Doped Diamond MOSFETs 佐賀大院エ¹, アダマンド並木精密宝石(株)²

ニロイ チャンドラ サハ¹, 金 聖祐², 大石敏之¹, ⁰嘉数 誠¹

Saga Univ.¹, Adamant Namiki Precision Jewel Co., Ltd.²

N. C. Saha¹, S. -W. Kim², T. Oishi¹, ^OM. Kasu¹

E-mail: kasu@cc.saga-u.ac.jp

<u>1. Introduction</u>

Diamond is a promising semiconductor material for high power and high-frequency operation as it possesses a very high breakdown field and thermal conductivity. The hole sheet concentration of Hdiamond can be increased by using NO₂ doping up to ~1 × 10¹⁴ cm⁻² [1] and can be passivated by using the Al₂O₃ layer [2]. Recently, we demonstrated pchannel modulation-doped diamond MOSFETs with NO₂-delta doping in the Al₂O₃ layer for spatial separation of acceptor layer to improve mobility [3]. This study reports a very high voltage (3326 V) operation of modulation-doped diamond MOSFETs.

2. Growth and Fabrication

Diamond MOSFETs were fabricated on (001) high-quality heteroepitaxial diamond (Kenzan diamond[®]). An Al_2O_3 layer was deposited on the H-diamond as the spacer layer. Then, NO₂ delta doping was performed on the spacer layer. Finally, an Al_2O_3 /NO₂/ Al_2O_3 was formed on the H-diamond sample.

3. Results and Discussion

Figure 1 (a) shows the maximum drain current $(I_{D,max})$ of 417 mA/mm and on-resistance of 82.2 Ω ·mm of modulation-doped diamond MOSFETs. From the capacitance characterization, a maximum

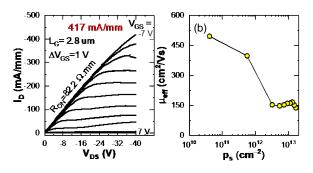


Fig 1. (a) DC output characteristics of modulation doped diamond MOSFET and (b) sheet-carrier density dependent effective mobility characteristics.

sheet concentration (p_s) of 1.66×10^{13} cm⁻² was obtained. By eliminating the access resistance, p_s dependent effective mobility (μ_{eff}) characteristic is shown in Fig. 1(b). μ_{eff} at the high current region was almost constant (~150 cm²/Vs) and near the threshold maximum, μ_{eff} becomes 497 cm²/Vs. A high breakdown voltage of 3326 V was measured as shown in Fig. 2. The specific on-resistance was 13.48 m Ω ·cm² and consequently, Baliga's figureof-merit (BFOM) was determined as 820 MW/cm².

4. Conclusion

In conclusion, by using NO₂-delta doping in the Al_2O_3 layer technique, we have demonstrated the high voltage (3326 V) operation and high BFOM (820 MW/cm²) of modulation-doped diamond MOSFETs.

Acknowledgements

This work was supported by the JSPS Grants-inaid for Scientific Research (No. 19H02616).

References

- [1] M. Kubovic, M. Kasu, Appl. Phys. Express 2 (2009) 086502.
- [2] M. Kasu, H. Sato, and K. Hirama, Appl. Phys. Express, 5 (2012) 025701.
- [3] M. Kasu, N. C. Saha, T. Oishi, and S. -W. Kim, Appl. Phys. Express, 14 (2021) 051004.

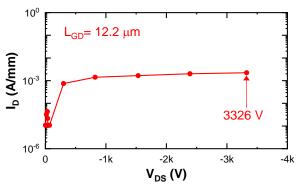


Fig. 2. Off-state breakdown voltages of modulation doped diamond MOSFET.