## レーザー照射による Na<sub>2</sub>FePO<sub>4</sub>F の非晶質化 Amorphization of Na<sub>2</sub>FePO<sub>4</sub>F by Laser irradiation

長岡技科大,<sup>0</sup>(D)平塚 雅史, 本間 剛, 小松 高行

## Nagaoka Univ. Tech. , °Masafumi Hiratsuka, Tsuyoshi Honma, Takayuki Komatsu E-mail: honma@mst.nagaokaut.ac.jp

近年、ナトリウムイオン電池の正極材料として様々な Na イオンホスト材料が研究されている。Na<sub>2</sub>FePO<sub>4</sub>F は 124mAhg<sup>-1</sup>という大きな理論容量を示し、約3Vの高い 作動電位で可逆的な充放電反応が確認されている[1]。 我々は、通常の溶融急冷法ではガラス化困難であるマリ サイト型 NaFePO<sub>4</sub> をレーザー局所加熱することでガラ ス化できることを発見し、幅広い組成のリン酸鉄ナトリ ウムをガラス化できることを実証している[2]。今回、 レーザー局所加熱による Na<sub>2</sub>FePO<sub>4</sub>F の構造変化を評 価した。

Na<sub>2</sub>FePO<sub>4</sub>F は原料に、NaH<sub>2</sub>PO<sub>4</sub>, FeO, NaF を用い て固相法により作製した。H<sub>2</sub>/N<sub>2</sub> (N<sub>2</sub> 150mL/min, H<sub>2</sub> 10mL/min) ガス雰囲気において 300°C で 3 時間仮焼き した後に、H<sub>2</sub>/N<sub>2</sub> ガス雰囲気において 600°C で 6 時間本 焼成した。焼成後試料を粉砕して Na<sub>2</sub>FePO<sub>4</sub>F 粉末を得 た。レーザーには連続発振型の Yb:YVO<sub>4</sub> レーザー ( $\lambda$ =1080 nm)を用いた。Si 基板上に Na<sub>2</sub>FePO<sub>4</sub>F 粉末を体積 させ、上から 2 次元的にレーザー照射(出力 0.35 W, レー ザー径 90  $\mu$  m, 走査速度 1 mms<sup>-1</sup>) した。



Fig.1 XRD patterns of pristine Na<sub>2</sub>FePO<sub>4</sub>F and laser-induced sample



Raman shift (cm<sup>-1</sup>)

Fig.2 Raman spectra of laser-induced Na<sub>2</sub>FePO<sub>4</sub>F and pristine Na<sub>2</sub>FePO<sub>4</sub>F.

レーザー照射後の Na<sub>2</sub>FePO<sub>4</sub>F の構造変化を粉末 X 線回折 (XRD)、ラマン散乱分光(波長 488nm)よ

り評価した。Fig.1 にレーザー照射した Na<sub>2</sub>FePO<sub>4</sub>F の XRDパターンを示す。回折強度は著し く小さくなり、構造が大きく変化していることがわかる。Fig.2 にレーザー照射した Na<sub>2</sub>FePO<sub>4</sub>F のラマン散乱スペクトルを示す。Na<sub>2</sub>FePO<sub>4</sub>F に対応するピークは消失し、900-1200cm<sup>-1</sup>にかけ て弱いブロードなピークのみ確認された。以上の結果より、レーザー局所加熱により Na<sub>2</sub>FePO<sub>4</sub>F を容易に構造変化させ、ガラス化できることを明らかとした。

- [1] Y. Kawabe et al., Electrochem. commun., 13, 11, 1225–1228, 2011.
- [2] M. Hiratsuka et al., J. Alloys Compd., 885, 160928, 2021.