Growth of Sn-doped Mn₄N epitaxial films and evaluation of their properties at room temperature

Univ. of Tsukuba¹, °T. Yasuda¹, T. Komori¹, H. Mitarai¹, T. Horiuchi¹, K. Toko¹ and T. Suemasu¹ E-mail: ytrp108@gmail.com

[Introduction]

Ferrimagnetic Mn₄N (Fig. 1) film is a promising candidate for various spintronics devises thanks to their small magnetization ($M_s \sim 100$ kA/m) and clear perpendicular magnetic anisotropy ($K_u = 0.1$ MJ/m)^[1]. Ni-^[2,3] and Co-doped^[4] Mn₄N films have magnetic compensation (MC) points which was revealed by the sign reversal of anomalous Hall resistivity and X-ray magnetic circular dichroism spectra. Using Ni-doped Mn₄N films, our group demonstrated ultrafast domain wall motion (v_{DW} = 3,000 m/s^[5]) driven only by spin-transfer torque at room temperature (RT) thanks to the angular momentum compensation around the MC point. Additionally, In-doped Mn₄N^[6] films show ferrimagnetic-to-ferromagnetic transition by their composition. In this work, we focus on Sn-doped Mn_4N ($Mn_{4-x}Sn_xN$) film. In the $Mn_{4-x}Sn_xN$ bulks, the MC point was suggested at low temperature^[7]. However, there have been no reports about such films. Therefore, we grew Mn_{4-x}Sn_xN epitaxial films and evaluated their properties.

[Experiment]

25-nm-thick $Mn_{4-x}Sn_xN$ epitaxial films (x = 0.0-1.4) were fabricated on the MgO(001) substrates by molecular beam epitaxy using radio-frequency nitrogen plasma and solid sources of Mn and Sn. Both the longitudinal and transverse resistivity ($\rho_{xx} & \phi_{xy}$) were measured with van der Pauw method by a physical property measurement system (Quantum Design) at RT. The obtained ρ_{xy} were divided into ordinary Hall resistivities (ρ_{OH}) and anomalous Hall resistivities (ρ_{AH}). While ρ_{OH} is proportional to the magnetic field, ρ_{AH} is proportional to the magnetic field. Therefore, we eliminated the contribution of ρ_{OH} by the slope of ρ_{xy} -*H* loops at high field regime to derive ρ_{AH} .

[Results]

Figure 2 shows the ordinary Hall coefficient ($R_{\rm H}$) and the anomalous Hall angle ($\theta_{\rm AH}$ (= $\rho_{\rm AH}/\rho_{xx}$)) of Mn_{4-x}Sn_xN films as a function of Sn composition, x. The sign of $R_{\rm H}$ reversed between x=0.4 and 0.5. It suggests that the dominant career-type changed from electrons ($R_{\rm H} < 0$) to holes ($R_{\rm H} > 0$) with increasing x. We label the composition at which the sign of $R_{\rm H}$ reversed as $x_{\rm cc}$. Moreover, the sign reversal of $\theta_{\rm AH}$ was observed three times at the composition except $x_{\rm cc}$, indicating that it was not caused by career-type change. Although similar results were also obtained in Ni-^[2], Co-^[4] and In-^[6] doped Mn₄N, this was the first report that the multiple sign reversals of θ_{AH} were confirmed in Mn₄N-based compounds. The origin of the reversals seems to be the change of magnetic structures such as MC and ferrimagnetic-to-ferromagnetic transition.

[Acknowledgement]

Measurements with a physical properties measurement system were performed with the help of Associate Prof. T. Koyano of Cryogenics Division of Univ. Tsukuba.

[Reference]

- [1] T. Hirose et al., AIP Adv. 10, 025117 (2020).
- [2] T. Komori et al., J. Appl. Phys. 125, 213902 (2019).
- [3] T. Komori et al., J. Appl. Phys. 127, 043903 (2020).
- [4] H. Mitarai et al., Phys. Rev. Mater. 4, 094401 (2020).
- [5] S. Ghosh *et al.*, Nano Lett. **21**, 2580 (2021).
- [6] T. Yasuda et al., J. Phys. D. Appl. Phys. 55, 115003 (2022).
- [7] M. Mekata, J. Phys. Soc. Japan 17, 796 (1962).

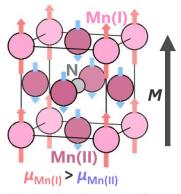


Fig. 1 Schematic images of antiperovskite crystalline and magnetic structure of ferrimagnetic Mn₄N.

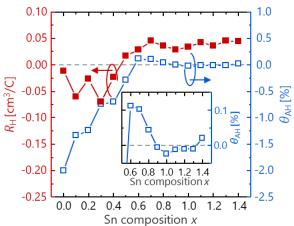


Fig. 2 Ordinary Hall coefficient $R_{\rm H}$ and anomalous Hall angle $\theta_{\rm AH}$ of Mn_{4-x}Sn_xN films. (inset: the enlarged part of $\theta_{\rm AH}$ for $x \ge 0.6$.)