Growth of Mn_{4-x}Cr_xN epitaxial films and analysis of their magnetic structure by X-ray magnetic circular dichroism

1. Univ. of Tsukuba, 2. KEK

Takumi Horiuchi¹, T. Komori¹, H. Mitarai¹, T. Yasuda¹, K. Amemiya², K. Toko¹, and T. Suemasu¹ E-mail: takumi1999.horiuchi@gmail.com

[Introduction] Antiperovskite ferrimagnetic Mn₄N film is a candidate of the future domain wall (DW) motion devices. We achieved $v_{DW} \sim 900$ m/s at a current density $j = 1.3 \times 10^{12} \text{ A/m}^2$ with Mn₄N strips only by spin transfer torque at room temperature(RT)^[1]. In addition, the magnetic compensation in Mn_{4-x}Ni_xN^[2] and Mn_{4-x}Co_xN^[3] was revealed at RT by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements. Domain wall velocity approaching 3000 m/s ($j=1.2 \times 10^{12}$ A/m²), which exceeds that of Mn₄N^[4], was obtained around the magnetic compensation composition of Mn_{4-x}Ni_xN at RT. This time, we cast a new spotlight on $Mn_{4-x}Cr_xN$ epitaxial films as another candidate because Cr also belongs to 3d transition metal and its preferential occupation sites may differ from those of Ni^[2] or Co^[3]. However, the growth of $Mn_{4-x}Cr_xN$ films have never been reported as far as we recognize. In this work, we succeeded in the epitaxial growth of Mn_{4-x}Cr_xN films for the first time and performed XAS and XMCD measurements to reveal the magnetic structures.

[Experiment] We grew 25-nm-thick $Mn_{4-x}Cr_xN(x = 0.13 \text{ and } 0.37)$ films on $SrTiO_3(001)$ substrates by molecular beam epitaxy. XAS and XMCD measurements were performed at the twin APPLE-II

Fig. 1 Antiperovskite crystal structure of Mn₄N.

undulator beam line BL-16A of KEK-PF in Japan. The magnetic fields of \pm 5T and circularly polarized X-rays were applied at an incident angle of 54.7° (magic angle)^[5] from the sample normal.

[Result] Figure 1 shows XAS and XMCD spectra of Mn- $L_{2,3}$ absorption edges in (a) Mn_{3.87}Cr_{0.13}N and (b) Mn_{3.63}Cr_{0.37}N. No significant difference was observed in the XAS spectra. In XMCD spectra, the sign reversal which suggests the magnetic compensation point was not observed. However, the intensity of peak β of Mn_{3.63}Cr_{0.37}N became smaller than that of Mn_{3.87}Cr_{0.13}N. Considering that the sharp peak α originates mainly from isolated Mn atoms at corner (I) sites, whereas more-itinerant Mn atoms at face-centered (II) sites contribute to the broad peak β ^[6], we concluded that Cr atoms preferentially replaced Mn(II) atoms at x = 0.13 and 0.37 unlikely to the case of Ni- or Co-doped Mn₄N.

[Acknowledgment] The XAS and XMCD measurements were performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2020G537).

[Reference]

- [1] T. Gushi et al., Nano Lett. 19, 8716 (2019).
- [2] T. Komori et al., J. Appl. Phys. 127, 043903 (2020).
- [3] H. Mitarai et al., Phys. Rev. Mater. 4, 094401 (2020).
- [4] S. Ghosh et al., Nano Lett. 21, 2580 (2021).
- [5] T. Koide et al., Phys. Rev. Lett. 87, 257201 (2001).
- [6] K. Ito et al., Phys. Rev. B 101, 1 (2020).

Fig. 2 XAS and XMCD spectra in (a) $Mn_{3.87}Cr_{0.13}N$ and (b) $Mn_{3.63}Cr_{0.37}N$ films at $Mn-L_{2,3}$ edges.