
Y-Mg 系三元水素化物高温超伝導体の構造安定性に関する系統的研究 The systematic study on the stability and superconductivity of Y-Mg-H compounds under high pressure

北陸先端大情報¹,北陸先端大情報基盤² 〇(**D2**) 宋 鵬¹、中野 晃佑¹、前園 涼¹、本郷 研 太²

Inf. Sci. JAIST¹, RCACI. JAIST.², ^OP. Song¹, K. Nakano¹, R. Maezono¹, K. Hongo² E-mail: mwkspg2002@icloud.com

Recently, with the experimental verification of room temperature superconductivity in C-S-H compounds $(T_c \sim 288 \text{K at} \sim 267 \text{GPa})$, [1] ternary hydrides have been playing an increasingly important role in the search for novel high-temperature superconductors. [2] Here we have investigated structural stabilities of high-pressure YMgH_x phases ($x = 2 \sim 10, 12, 14, \text{ and } 16$) and their superconductivities by employing evolutionary-algorithm-based crystal search combined with first-principles calculations. For predicted candidate structures of YMgH_x, our convex hull and phonon analyses revealed seven stable and two metastable phases. For all the predicted phases, we also predicted superconducting transition temperatures (T_c) by using the McMillun formula. We found P4/mmm-YMgH₆ having $T_c = 76$ K at 300 GPa comparable to the boiling temperature of liquid nitrogen, and high- T_c (\geq 77 K) being predicted for the H-richer phases, P4/mmm-YMgH₈ (124 K at 300 GPa), Cmmm-YMgH₁₂ (152 K at 250 GPa), and $Fd\bar{3}m$ -YMgH₁₂ (190 K at 200 GPa), which possess clathrate structures composed of H₁₄, H₁₈, H₂₄, and H_{24} cages, respectively. To elucidate why the H-rich phases attain high- T_c , we analyzed electronic and phonon band structures as well as electron-phonon coupling strength based on Eliashberg spectral functions. The clathrate structures exhibit both a larger H-driven electronic density of states at the Fermi level and a denser H-driven phonon density of states, correlating with larger EPC constants. Our structural and chemical bonding analyses has revealed that the highest- T_c phase $Fd\bar{3}m$ -YMgH₁₂ has H₄ units formed in the sodalite cage (Fig. 1).

 \boxtimes 1: (a) Clathrate structure and (b) Phonon dispersions, projected phonon densities of states, and Eliashberg spectral function of $Fd\bar{3}m$ -YMgH₁₂.

参考文献

- Elliot Snider, Nathan Dasenbrock-Gammon, Raymond McBride, Mathew Debessai, Hiranya Vindana, Kevin Vencatasamy, Keith V. Lawler, Ashkan Salamat, and Ranga P. Dias. Room-temperature superconductivity in a carbonaceous sulfur hydride. *Nature*, 586(7829):373–377, oct 2020.
- [2] Peng Song, Zhufeng Hou, Pedro Baptista de Castro, Kousuke Nakano, Kenta Hongo, Yoshihiko Takano, and Ryo Maezono. High-tc superconducting hydrides formed by lah24 and yh24 cage structures as basic blocks. *Chem. Mater.*