EIS Charge Transfer Enhancement by the Electrochemical Mediator "Methylene Blue" 阪大院医¹, NFHD² ^O韓 煥文^{1,2}, 朱 鼎傑¹, 山下 一郎¹ Osaka Univ.¹, NFHD Corp.², ^oHuanWen Han^{1, 2}, Ting-Chieh Chu¹, Ichiro Yamashita¹ E-mail: arctic.han@dept.med.osaka-u.ac.jp

Electrochemical Impedance Spectroscopy (EIS) is a method wildly used for interface measurement. This has great potential for biomolecular detection due to the capacity to operate under high salt conditions. The impedances monitor the charge-transfer between electrode and electrochemical redox probes. Amplifying the charge-transfer process will achieve high measurement performance.^[1] The selection of redox probe depends on various parameters, among which 1 - 10 mM [Fe(CN)₆]^{3-/4} is the most frequently chosen in EIS experiments, and we use this redox pair as well. We have discovered that adding a small amount of second redox probe could enhance the charge transfer between electrode and hexacyanoferrate strongly, as [Ru(bpy)₂DPPZ]²⁺.^[2] [Ru(bpy)₂DPPZ]²⁺ is a DNA intercalator with 2 positive charges, and wildly used for luminescent signals in chemosensors. Methylene Blue is known as a DNA intercalator with electrochemical activity. Since MB has a different affinity for ssDNA and dsDNA, it has been widely used for DNA hybridization monitor. Besides the MB-guanine interaction. MB could also bind the DNA surface through the electrostatic interaction or intercalative interaction between G-C pair.^[3] We change the Ru complex to methylene blue and carry out the EIS measurement and found a similar effect. The EIS were measured with commercial glassy carbon electrode and the electrolyte was PBS with 1 mM K_3 [Fe(CN)₆] / K_4 [Fe(CN)₆]. After stabilization, we added the MB from 0.01 μ M, 0.05 μ M, 0.1 μ M, 0.5 μ M, 1 μ M, and 2 μ M in sequence. Figure 1 shows the result of the Nyquist plot. After increasing the MB concentration to $0.5 \,\mu$ M, very small semicircles are shown on the plot and the Rct is almost no change with concentration increase. This phenomenon looks like occur in a wide range of electrodes and DNA intercalator and need more studies to clear.

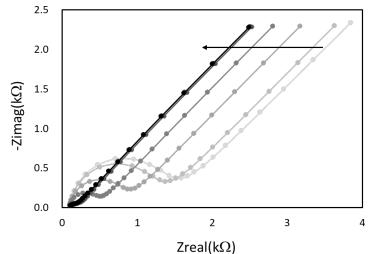


Figure 1. The Nyquist of Methylene blue from 0.01 μ M, 0.05 μ M, 0.1 μ M, 0.5 μ M, 1 μ M, and 2 μ M. With the MB concentration increase, the Rct decrease like Ru complex.

Reference

1. Belluzo, M., Ribon, M., Lagier, C. Sensors 2008, 8(3): 1366-1399.

2. Han, H., Nobusawa, K., Yamashita, I., Anal. Chem. 2021. DOI: 10.1021/acs.analchem.1c03681

3. Rashid, J and Yusof, N, Sensing & Bio-sensing Res. 2017, (16):19-31.