Mg 熱拡散を用いた GaN の p 型化プロセス

The p-type conversion process by Mg thermal diffusion into GaN

名大院工¹,名大 IMaSS²,名大 VBL³,名大 ARC⁴

○ 伊藤佑太¹, 陸順¹, 渡邊浩崇², 出来真斗³,

新田州吾², 田中敦之², 本田善央², 天野浩^{2,3,4}

Nagoya Univ.¹, IMaSS Nagoya Univ.², VBL Nagoya Univ.³, ARC Nagoya Univ.⁴ ^O Yuta Itoh¹, Shun Lu¹, Hirotaka Watanabe², Manato Deki³,

Shugo Nitta², Atsushi Tanaka², Yoshio Honda², and Hiroshi Amano^{2,3,4}

E-mail: ito.yuta@nagoya-u.jp

【はじめに】

GaN の局所的 p 型伝導制御は縦型パワーデバイス作製において必要不可欠な技術である。しか し、Mg イオン注入、及び焼鈍時に形成される様々な欠陥が p 型伝導性を阻害している。1 GPa 超 高圧高温アニールにより高品質な p 型 GaN(正孔濃度: 3.6×10^{16} cm⁻³,移動度: 24.1 cm²V⁻¹s⁻¹)の作製が 可能となったが^[1]、Mg 濃度分布制御やプロセス低圧化が課題である。そこで、我々は Mg イオン 注入法の代替として Mg 熱拡散法に原点回帰した。熱拡散法は不純物濃度制御に優れたイオン注 入法が注目を集める以前に、半導体の不純物ドーピング法として盛んに用いられた技術である。 しかし、Mg 熱拡散法を用いた GaN の p 型化に関しては 20 年前に報告された 1000°C以下で数時 間焼鈍した内容に限られている^[2]。原因として当時は高品質 GaN の結晶成長や保護膜を用いた 1000°C以上の焼鈍技術が現在より発展しておらず、Mg 熱拡散プロセスが確立できなかったためと 考えられる。本研究では、濃度分布制御が可能、且つ超特殊環境を必要としないドーピング技術 確立のため、Mg 熱拡散法を用いた p 型 GaN の作製、評価を試みた。

【実験】

アンドープ(UID) GaN に電子ビーム(EB)蒸着法を用いて Mgを50 nm 堆積し(図 1-a)、窒素雰囲気下にて800℃で5分 間焼鈍した(図 1-b)。焼鈍にて Mg 拡散源となる Mg-Ga-N 層を 形成⁽³⁾した後、王水洗浄により最表面の Mg-O 層を除去した (図 1-c)。AIN 保護膜を300 nm 堆積し(図 1-d)、窒素雰囲気下 にて、1100℃、1200℃、及び1300℃で5分間焼鈍した。保護 膜を除去し、2 次イオン質量分析(SIMS)、及びホール効果測 定による評価を行った。

【結果と考察】

図 2 に焼鈍後の Mg 濃度分布を示す。Mg は焼鈍温度の上昇 に伴い試料深くに拡散した。試料最表面の Mg 濃度増加は Mg-Ga-N 層の高濃度 Mg が影響していると考えられる。表 1 にホール測定から得られたアクセプタ濃度(N_a)、ドナー濃度 (N_a)、キャリア濃度(室温)、及び移動度(室温)を示す。p 型層 厚さには計算(図 2)から得られた平均拡散距離を用いた。 N_a は SIMS の Mg 濃度とほぼ一致しており、拡散した Mg はアク セプタとして活性化していた。また、 N_d / N_a は 10%以下であ った。移動度は Mg 濃度 2.3×10¹⁸ cm⁻³のエピタキシャル成長 p 型 GaN 26.5 cm²V⁻¹s⁻¹と一致した^[4]。以上、Mg-Ga-N 層を用い た Mg 熱拡散法は Mg の深さ制御が可能であり、且つ p 型化に

- [2] Y. J. Yang et al., Jpn. J. Appl. Phys. 39, L390 (2000)
- [3] S. Lu et al., Appl. Phys. Lett. 119, 242104 (2021)
- [4] M. Horita et al., Jpn. J. Appl. Phys. 56, 03100 (2017)

【謝辞】本研究は、文部科学省 革新的バワーエレクトロニクス創出基盤 技術研究開発事業 JPJ009777 の助成を受け行われた。

Fig. 1. Mg diffusion process

Table I.	Na,	Nd,	carrier	conc.	and	mobil	ity
	,	,					· .

	Na (cm [.] 3)	Nd (cm ⁻³)	Carrier (cm ⁻³)	Mobility (cm ² V ⁻¹ s ⁻¹)
1100°C	1.7 × 10 ¹⁸	2.3 × 10 ¹⁷	4.2×10 ¹⁶	26.1
1200°C	2.9×10^{18}	2.3×10^{17}	6.2×10^{16}	27.0
1300°C	2.9×10 ¹⁸	1.7×10^{17}	6.7 × 10 ¹⁶	27.7