順方向電流ストレスによる GaN p-n 接合の逆方向リーク電流の増加

Increase of reverse leakage current at GaN p-n junctions induced by forward current stress

豊田中研¹, ミライズ・テクノロジーズ², 名古屋大³, 豊田合成⁴

⁰成田 哲生¹, 長里 喜隆², 兼近 将一³, 近藤 健³, 上杉 勉³, 冨田 一義³,

池田 智史², 山口 聡¹, 木本 康司¹, 小嵜 正芳⁴, 岡 徹⁴, 小島 淳³, 須田 淳³

Toyota CRDL.¹, MIRISE Technologies², Nagoya Univ.³, Toyoda Gosei⁴, [°]Tetsuo Narita¹, Yoshitaka Nagasato², Masakazu Kanechika³, Takeshi Kondo³, Tsutomu Uesugi³, Kazuyoshi Tomita³, Satoshi Ikeda², Satoshi Yamaguchi¹, Yasuji Kimoto¹, Masayoshi Kosaki,⁴ Tohru Oka,⁴ Jun Kojima³, and Jun Suda³

E-mail: tetsuo-narita@mosk.tytlabs.co.jp

[目的] 逆方向電圧および順方向電流ストレスが GaN p-n 接合の電気特性に与える影響を調査した。 [方法] 有機金属気相成長法を用いて、自立 GaN 基板上に耐圧 219 Vの pn 接合層を積層した。脱水素 熱処理後、6~7°の極浅ベベルメサ終端構造[1]を用いて、接合直径 443 µm の円形ダイオード領域を 形成した。直径 320 µm の Ni/Au アノード電極、基板裏面にカソード電極を形成した。代表的な 3 素子 (#1DX、#2DX、#3DX と表記)の初期の順方向、25、100、175 ℃で逆方向電流-電圧特性を取得後、 以下の(1)~(4)の順にストレス試験を行った。(1) 耐圧の 80%までの逆方向電圧掃引を 25、100、175 ℃ で各 10 回。(2)耐圧の 80%電圧での逆バイアス保持を 25、100、175 ℃で各 1 時間。(3) 1 mA の定電流 で逆バイアス保持を 25、100、175 ℃で各 1 時間、(4) 25 ℃で 50、100、200、500 A cm²の順方向通電 を各 1 時間。(2)~(4)では各試験後に逆方向電流-電圧特性を取得し、ストレス前と比較した。 [結果] (1)~(3)の逆バイアス試験後において、逆方向電流-電圧特性の変化はなかった[2]。特に(3)はア バランシェ状態での保持試験に相当することから、GaN p-n 接合は逆バイアス温度ストレスに対して強 い耐性を有することが示された。一方で(4)の順方向通電ストレス試験後、1 素子(#2DX) においてリ ーク電流の増加がみられた。エミッション顕微鏡(EMS)で評価したところ、リーク電流は局所的に 流れていることが分かった。EMS の発光点は、X 線トポグラフィ像の転位コントラストの一つと一致

した[2]。逆方向リーク電流に変化のなかった素子#1DX、および劣化した素子#2DX の EMS の発光点 以外でも複数の転位コントラストを確認したことから[2]、順方向通電による GaN p-n 接合へのリーク 電流パスの形成は特定の貫通転位で起こることが示唆された。

