Li で部分置換した Mg₂Sn 単結晶の結晶構造と熱電特性 Crystal Structures and Thermoelectric Properties of Li-doped Mg₂Sn Single Crystals 東北大学¹ ⁰(D)黄 志成¹, 林 慶¹, 宮崎 譲¹ Tohoku Univ.¹, ^oZhicheng Huang¹, Kei Hayashi¹, Yuzuru Miyazaki¹ E-mail: kei.hayashi.b5@tohoku.ac.jp

Mg₂Sn is a promising mid-temperature thermoelectric (TE) material consisting of earth-abundant, low cost, and less-toxic elements. We successfully prepared Mg₂Sn single crystals (SCs) with Mg vacancy (V_{Mg}) by melting method under Ar pressure ^[1]. The V_{Mg} has an effect of lowing lattice thermal conductivity (κ_{lat}) of Mg₂Sn, which is lower than those of the Mg₂Sn polycrystals (PC) ever reported. Furthermore, we prepared n-type Mg₂Sn_{1-x}Sb_x (x = 0.005, 0.01, and 0.02) SCs and investigated the effect of V_{Mg} and Sb atoms on their crystal structures and TE properties ^[2]. The higher carrier mobility of Mg₂Sn_{1-x}Sb_x SCs led to a higher power factor (PF = 5.1 mW·m⁻¹·K⁻²) than that of the PC, which resulted in the maximum dimensionless figure of merit (zT_{max}) for the Mg₂Sn_{0.99}Sb_{0.01} SC (~ 0.72 at 650 K).

Compared with n-type Mg₂Sn, p-type Mg₂Sn shows a lower *zT* value. So far, Ag, Li, Na, and Ga doping has been used to obtain p-type Mg₂Sn by increasing the hole carrier concentration. The *zT*_{max} was obtained for an Ag-doped Mg₂Sn large-grain PC with finely dispersed Mg₂Sn + MgAg eutectic clusters (*zT* = 0.3 at ~500 K)^[3] and for a Li- doped Mg₂Sn PC (*zT* = 0.3 at 700 K)^[4]. Recently, we prepared Mg₂Sn_{1-x}Ga_x SCs and investigated their TE properties. Although we obtained relatively low κ_{lat} for Mg₂Sn_{0.98}Ga_{0.02} SC, the *zT* value (*zT*_{max} = 0.18@450 K) was still not high enough because of the low carrier concentration (*n* = 5.92×10¹⁹ cm⁻³) and low PF (PF_{max} = 1.5 mW·m⁻¹·K⁻²) ^[5].

In this work, a series of Mg_{2-x}Li_xSn (x = 0, 0.005, 0.01, 0.02, 0.03) SCs with V_{Mg} were prepared by the melting method, whose morphology and TE properties were investigated with a particular emphasis on the effects of doped Li atoms and V_{Mg}. With Li content *x* increased, σ increased over the whole temperature range. The electrical conductivity of the x = 0.02 SC was higher than that of the Ga-doped SC ^[5] and was similar with that of the Li-doped Mg₂Sn SC ^[4]. Significantly, the Seebeck coefficient of the x = 0.02 SC was higher than that of the Li-doped Mg₂Sn PC ^[4]. We assumed that this behavior was affected by a larger carrier effective mass (m^*). As a result, the PF (~ 2 mW·m⁻¹·K⁻² for x = 0.02 SC) was higher than that of the Li-doped PC ^[4]. In addition, the κ was lower than that of the Li-doped PC ^[4] due to the enhanced phonon scattering by the introduced V_{Mg}. Finally, the zT_{max} value of 0.36 was achieved for Mg_{1.98}Li_{0.02}Sn at 600-650 K, which was 20% higher than that of the reference^[4].

This work was supported by JST SPRING, Grant number JPMJSP2114, and partly based on collaborative research between Sumitomo Metal Mining Co., Ltd., and Tohoku University, which is part of the Vision Co-creation Partnership.

- [2] W. Saito et al., ACS Appl. Mater. Interfaces 12, 57888-57897 (2020).
- [3] H. Y. Chen et al., J. Electron. Mater. 39, 1792–1797 (2010).
- [4] H. Kamila et al., J. Mater. Chem. A 7, 1045–1054 (2019).
- [5] Z. C. Huang et al., ACS Appl. Energy Mater. 4, 13044–13050 (2021).

^[1] W. Saito et al., Sci. Rep. 10, 1-10 (2020).