Nanosecond ultralow power spin orbit torque magnetization switching induced by BiSb topological insulator

Tokyo Tech.¹, NHK², Univ. Tokyo³

°N. H. D. Khang¹, T. Shirokura¹, T. Fan¹, M. Takahashi², N. Nakatani², D. Kato², Y. Miyamoto², P. N. Hai^{1,3}

E-mail: nguyen.h.ai@m.titech.ac.jp

Spin-orbit torque (SOT) magnetization switching has become one of the central topics of non-volatile, low-power, and ultrafast magnetoresistive random access memory (MRAM) [1]. Ultrafast SOT switching was first confirmed in Pt/Co bi-layers, followed by Ta/Co, and W/CoFeB/MgO stacks with perpendicular magnetic anisotropy (PMA) [2-4]. However, using heavy metals as a spin source requires very high current densities due to the limitation of their spin-to-charge conversion efficiency. Topological insulators (TIs) with spin-momentum locking surface states are promising for a spin current source thanks to their giant spin Hall angle. Thus, SOT-MRAM based on TIs has potential for both ultralow-power and ultrafast operation [5]. However, SOT switching using TIs has been studied so far in the thermal activation regime with relatively long pulse currents (≥ 10 ns). For practical application of SOT-MRAM, it is essential to study the SOT performance of TIs in the non-thermal regime with nanosecond pulse width when the switching time is limited by domain wall velocity.

In this work, we studied SOT magnetization switching induced by a Bi_{0.85}Sb_{0.15} layer on a Si/SiO_x substrate in both thermal activation and non-thermal regime with current pulse width τ down to 1 ns. For this purpose, we deposited a stack of Bi_{0.85}Sb_{0.15}(10 nm)/[Pt(0.4 nm)/Co(0.4 nm)]₂/insulating buffer on a Si/SiO_x substrate by magnetron sputtering, as shown in Fig. 1(a). We fabricated a 1000 nm × 800 nm Hall bar for SOT measurements, where the Pt/Co multilayers have a large PMA of $H_k^{\text{eff}} = 6$ kOe. Figure 1 (b) shows the threshold switching current density $J_{\text{th}}^{\text{BiSb}}$ as a function of τ at $H_x = 1$ kOe. The red dashed line is fitting by the thermal activation model ($\tau >> 10$ ns), which yields a zero-Kelvin $J_{\text{th}0}^{\text{BiSb}} = 2.5 \times 10^6$ A/cm² and a thermal stability factor $\Delta = 35$. Meanwhile, the green dashed line is fitting for the non-thermal regime using $J_{\text{th}}^{\text{BiSb}} = J_{\text{th}0}^{\text{BiSb}} + Q/\tau$, which yields a larger $J_{\text{th}0}^{\text{BiSb}} = 4.1 \times 10^6$ A/cm² but still smaller than those observed in heavy metals by nearly two orders of magnitude. Figure 1(c) shows SOT switching loops at various τ from 4 ns to 1 ns. We successfully demonstrate SOT-induced magnetization down to $\tau = 1$ ns. We also found that the domain wall velocity of Pt/Co multilayers driven by BiSb is as fast as 470 m/s at a modest $J_{\text{BiSb}}^{\text{BiSb}} = 1.6 \times 10^7$ A/cm², $\tau = 3$ ns) at $H_x = -1$ kOe and +1 kOe. These results demonstrate the potential of BiSb for ultra-fast operation of SOT-based spintronic devices.

Acknowledgment: This work is supported by JST CREST (JPMJCR18T5). References: [1] S. Fukami, et al., Nat. Nanotech. 11, 621 (2016). [2] K. Garello, et al., Appl. Phys. Lett. 105, 212402 (2014). [3] C. Zhang, et al., Appl. Phys. Lett. 107, 012401 (2015). [4] C. Zhang. Et al., Appl. Phys. Lett. 109, 192405 (2016). [5] N. H. D. Khang, et al, Nature Mater. 17, 808 (2018).

Fig. 1. (a) Schematic structure of our stack for nanosecond ultralow power SOT switching using BiSb. (b) Threshold switching current density J_{th}^{BiSb} as a function of pulse width τ at $H_x = 1$ kOe measured in a 1000 nm × 800 nm Hall bar device. The red dashed line is fitting by the thermal activation model ($\tau >> 10$ ns), and the green dashed line is fitting for the non-thermal regime using $J_{th}^{BiSb} = J_{th0}^{BiSb} + Q/\tau$. (c) SOT switching loops at various τ from 4 ns to 1 ns. (d) Deterministic multiple switching at $J_{th}^{BiSb} = 1.3 \times 10^7 \text{ A/cm}^2$, $\tau = 3$ ns, and $H_x = \pm 1$ kOe.