高温 № (+02) アニールにおける SiC の表面酸化反応によって変化する 4H-SiC/SiO2 構 造へNの取り込みと除去の速度論的バランスの理解

Understandings of the kinetic balance between N incorporation and removal affected by SiC surface oxidation for 4H-SiC/SiO₂ structure in high-temperature N₂ (+O₂) annealing

東京大学大学院工学系研究科マテリアル工学専攻⁰(D)Tianlin Yang, 喜多浩之

Department of Materials Engineering, The Univ. of Tokyo °(D)Tianlin Yang, Koji Kita

E-mail: yangtlin3@g.ecc.u-tokyo.ac.jp

[Motivation]

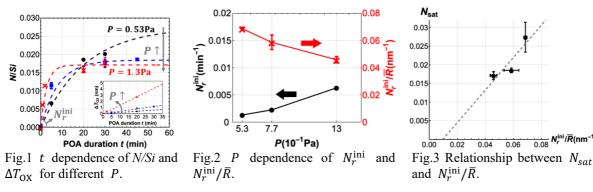
Improvement of the performance of 4H-SiC MOSFET was demonstrated by nitridation process, which was related to the density of surface N atoms incorporated during the interface nitridation process [1]. However, for the conventional nitridation process by NO post-oxidation annealing (POA), there is a plenty of room to improve the surface N density, which would be determined by the kinetic balance between the simultaneous reactions of N incorporation and N removal from the SiC surface during annealing. For designing a nitridation process to achieve a higher surface N density (N(t)), where t is the annealing duration), the control of such balance is critical. In case of NO annealing the N removal is attributable to the surface oxidation [2]. To simplify the model, we assume the reaction rate of N-incorporation (N_+) to be constant during POA, and the removal rate (N_-) to be proportional to the surface oxidation rate (R) and N(t). Thus, the effective nitridation rate (dN(t)/dt) would be as follows:

$$\frac{dN(t)}{dt} = N_{+} - N_{-} \Longrightarrow N(t) = \frac{1}{c} \cdot \frac{N_{+}}{R} [1 - \exp(-cR \cdot t)], \text{ where } N_{-} = cR \cdot N(t)$$
(1)

where c is a constant. According to Eq. (1), N(t) would saturate at a certain level that is determined by N_{+}/R , which could be experimentally determined. This study aims to provide systematic understandings of the kinetic balance between N incorporation and N removal based on Eq. (1) for 4H-SiC(0001)/SiO₂ structures. For this purpose, the high-temperature N₂-POA was used in this study to control N_+ and N_- independently by tuning R with intentional O2 introduction instead of annealing in NO that decomposes to produce O2 with poor controllability. [Experimental]

4°-off 4H-SiC(0001) with epitaxial layer (~1×10¹⁶ cm⁻³ n-type doped) were used as substrates. After oxidizing in dry O₂ to grow around 6nm-thick SiO₂ layer, POA was done at 1370°C from 1 to 45min in N₂ ambient, with a series of small amount of O₂ whose partial pressure was denoted as P. The SiO₂ regrowth thickness (ΔT_{OX}) during N₂-POA was determined by measuring X-ray reflectivity before and after POA. After removing the SiO₂ layer completely with HF, the relative ratio of N (N/Si) was estimated with the peak area ratios of N1s to Si2p by XPS.

[Results and discussions]


Fig. 1 shows the t dependence of N/Si as well as ΔT_{OX} (inset) for a series of P. Saturation of N/Si is found for large t. The saturated surface N concentration (N_{sat}) was determined by fitting the N/Si - t relationship with the exponential function shown by Eq. (1). The initial nitridation rate $N_r^{\text{ini}}(=[N/Si(t)]/t)$ in the initial stage of POA was defined to approximately estimate N_+ , while the oxide growth rate \overline{R} was determined from the slope of $\Delta T_{\text{OX}} - t$ relationship. Fig. 2 summarized the *P* dependence of N_r^{ini} and $N_r^{\text{ini}}/\overline{R}$. Note that N_r^{ini} increases with *P*, which means a slight addition of O₂ enhances N_+ . This is explainable considering that the incorporation reaction would be triggered by surface oxidation [3]. On the other hand, N_r^{ini}/\bar{R} decreases monotonously with P, indicating that the enhancement of N_{-} by oxidation is more significant than that of N_{+} . Fig. 3 shows the relationship between N_{sat} and $N_{r}^{\text{ini}}/\bar{R}$. A linear relationship was observed, which clearly shows that $N_{r}^{\text{ini}}/\bar{R}$ is a good indicator for saturated surface N density rather than *P*. *P* would affect $N_{r}^{\text{ini}}/\bar{R}$ since N_{+} and N_{-} show quantitatively different relationships with *P*, and therefore have an impact on N_{sat} . Besides, a higher N_{sat} was found for P = 0 cases (data not shown), which will be explainable by taking the active oxidation rate as N_{-} instead of \overline{R} in the passive oxidation cases.

[Conclusions]

While a slight amount of O₂ inclusion in N₂-POA ambient was found to enhance N_+ , the parameter N_+/R was verified to be a good indicator of the incorporation-removal balance which determines N_{sat} .

[Acknowledgement] This work was partially supported by JSPS KAKENHI.

References [1] J. Rozen et al. J. Appl. Phys. 105, 124506 (2009). [2] K. McDonald et al., J. Appl. Phys. 93, 2257 (2003). [3] T. Yang et al. Extended Abstract of the 8th ADPS Conference (2021) IIA-9.

_____ *N_r^ini/R*(nm⁻¹)