4H-SiC/SiO2界面での窒素酸化物およびアンモニアの反応機構の理論的検討

Ab initio study for reaction of nitrogen oxide and NH₃ at 4H-SiC/SiO₂ interface 三重大院工¹, 島根大院自然科学², 名大未来研³

〇秋山亨¹,清水紀志¹,伊藤智徳¹,影島博之²,白石賢二³

Mie Univ.¹, Shimane Univ.², Nagoya Univ.³

OToru Akiyama¹, Tsunashi Shimizu¹, Tomonori Ito¹, Hiroyuki Kageshima², Kenji Shiraishi³ E-mail: akiyama@phen.mie-u.ac.jp

【はじめに】4H-SiCは優れた物性に加え、熱酸化によりSiO2絶縁膜が得られることからパワーデバイスへの適用が可能な材料として注目を集めている。しかしながら、SiC/SiO2界面では大量の欠陥が形成することが知られており、4H-SiCを用いた金属-酸化物-半導体電界効果トランジスタ(MOSFET)のデバイスの信頼性を低下させる原因となっている。界面トラップ密度(D_{it})を低減する手段として、NO分子による酸化後のアニーリング(NO-POA)が用いられており[1,2]、さらにN₂OやNH₃を用いたPOA[3,4]も報告されている。しかしながら、これらアニーリング種の4H-SiC/SiO2界面での挙動およびアニーリング後の構造についてはまだ不明な点が多いのが現状である。これまでに我々は、NO-POAによるD_{it}低減の物理的起源を明らかにするために4H-SiC/SiO2界面でのNO分子の反応経路探索を行い、Si-N結合の形成により界面が安定化し、さらに局在する電子状態が反応後の界面では消失することを明らかにした[5]。本研究では、POA過程におけるアニーリング種依存性を明らかするため、4H-SiC/SiO2界面におけるN₂OおよびNH₃分子の反応経路探索を行い、反応機構およびその面方位依存性について議論する。

【結果および考察】Table 1 は、第一原理計算を用いて Si 面および C 面においてそれぞれ C-C および C=C 結合が形成された 4H-SiC/SiO₂ 界面[6]における NO, N₂O および NH₃ 分子での界面反応に対する反応の終状態構造の原子配置、反応熱 E_{rc} (反応前後の構造におけるエネルギー差)および反応のエネルギー障壁値 E_b を示したものである。この表から、アニーリング種および面方位に依らず反応後においてはカーボンオキサイド(CO および CO₂ 分子)が形成することが分かる。N₂O 分子においては NO 分子と同様の反応が起こり、CO および CO₂ 分子の脱離とともに Si₃-N(3 つの Si-N 結合)および Si₄-N(4 つの Si-N 結合)が形成する。一方、NH₃ 分子の反応においては面方位に依存して界面で Si-H および C-H 結合を含む様々な原子配置が出現する。Si 面においては NO 分子における E_b が低ったも同様の傾向が見られる。これら E_b の値(最大で 3.4 eV)とアニーリング種に依存した E_b の違いから、通常のアニーリング 温度(1050~1250 °C)[4]は NO や NH₃ 分子を用いた POA の温度より高いものとなっている。講演では、これら界面反応に対する計算結果に加えて電子状態解析の結果についても議論する。

【参考文献】[1] G. Y. Chung et al., Appl. Phys. Lett. **76**, 1713 (2000). [2] K. McDonald *et al.*, J. Appl. Phys. **93**, 2719 (2003). [3] G. Y. Chung *et al.*, Appl. Phys. Lett. **77**, 3601 (2000). [4] L. K. Swanson *et al.*, Mater. Sci. Forum **740-742**, 713 (2013). [5] T. Shimizu *et al.*, Jpn. J. Appl. Phys. **60**, SBBD10 (2021). [6] T. Akiyama *et al.* Surf. Sci. **641**, 174 (2015).

Table 1 Fin	nal atomic config	guration, calc	ulated reaction	energies and en	nergy barriers ($E_{\rm rc}$ and I	E _{rc} , respective	ely) for
the reaction	ns of NO, N ₂ O, a	nd NH3 mole	cules at the Si-	and C-face into	erfaces. The res	ults of NC	have been of	btained
in previous	calculations. [5]]						

Orientation	on Molecule Final atomic configuration		$E_{\rm rc}~({\rm eV})$	$E_{\rm b}~({\rm eV})$
	NO	$Si_4-N+Si_4-C+CO_2$	8.50	1.2
Si-face	N_2O	$2Si_4-N+Si_4-C+CO+CO_2$	7.37	2.6
	NH_3	Si_4 -N + 2Si-O-H + Si-H + CO	4.13	2.2
	NO	$Si_3 - N + C - C = O + CO_2$	7.85	0.8
C-face	N_2O	$2Si_3-N+3CO$	5.97	3.4
	NH ₃	$Si-NH-C-Si+Si-O+C-H+Si-O-H+CO_2$	3.59	1.7