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Ferromagnetic multilayers potentially exhibit fascinating electronic, magnetic, and optical properties and 

these properties strongly depend not only on constituent elements and their compositions, but also on the 

atomic-layer configurations [1]. Search for multi-functional multilayers with optimally controlled atomic-

layer configuration is of importance in both fundamental and applied physics perspectives. Neural network 

(NN), one of machine-learning techniques, has been developed rapidly in recent years and has succeeded to 

explore desired materials from big database. In contrast, from the first-principles calculations based on den-

sity-functional theory (DFT), it is difficult to construct such big database due to the huge computational costs, 

which limits a learning accuracy of NN training. Thus, an improvement of the learning accuracy from the 

small database is desired for the NN approach combined with DFT. 

Here, we introduce Gaussian data-augmentation (GDA) method to the NN-learning, in which the training 

input data are augmented by adding Gaussian noises, and apply this method to binary Co-Fe magnetic mul-

tilayer system. As a target quantity, we employ the formation energy, EForm, of nine monolayers of Co1-xFex 

on an MgO(001), which corresponds to the number of models, 512 (=29) atomic-layer configurations [2]. 

The NN consists of four layers, in which rectified linear and identity functions are employed in the hidden 

and output layers, respectively. To demonstrate the learning accuracy from small database, we train the net-

work for 30% of all data with size 512 and evaluate the learning accuracy by R2 score to the test data which 

accounts for 70% of all data. The NN without the GDA results in small R2 score (0.215), giving a low pre-

diction accuracy, and the correlation of 

EForm’s between the DFT and NN results is 

scattered [Fig. 1(a)]. Contrary, adapting the 

GDA method significantly improved the 

learning accuracy up to R2 = 0.684 and the 

NN-predicted EForm’s reliably follow the 

DFT results [Fig. 1(b)]. We will present the 

results applied to the magnetic properties 

and discuss a role of the GDA in detail.  
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FIG. 1 Correlations between the DFT-calculated and the NN-

predicted EForm from (a) without and (b) with GDA. 
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