電子線照射によって形成した 4H-SiC 中シリコン空孔の濃度定量

Quantitation of the concentration of silicon vacancies in 4H-SiC

formed by electron beam irradiation

埼玉大院¹,量研²

O(M1)元木 秀^{1,2}, 佐藤 真一郎², 佐伯 誠一², 增山 雄太², 山﨑 雄一², 土方 泰斗¹, 大島 武² Saitama Univ.¹, QST.²,

°S. Motoki^{1, 2}, S.-I. Sato², S. Saiki², Y. Masuyama², Y. Yamazaki², Y. Hijikata¹, T. Ohshima² E-mail: s.motoki.639@ms.saitama-u.ac.jp

[はじめに]

炭化ケイ素中のシリコン空孔(V_{si})は、磁場や温度を高感度に検出できる「量子センサ」としての 応用が期待されている。V_{si}は高エネルギー電子線照射によって形成することができ、センサ感度 がV_{si}の数(濃度)に依存することから、実用化のためにはV_{si}濃度の定量が重要となる。また、電子 線照射によってデコヒーレンスの原因となる不要な照射欠陥も同時に形成されるため、その影響 を明らかにするとともに低減する手法を確立する必要がある。本研究では、電子スピン共鳴(ESR) 測定より、電子線照射量に対するV_{si}形成濃度を定量化するとともに、磁気センシングの基本原理 である光検出磁気共鳴(ODMR)スペクトルの変化を調べ、照射欠陥の影響について検討した。 [実験方法及び結果]

高純度半絶縁性 4H-SiC 基板に 2 MeV 電子線を最大 3.0×10^{18} cm⁻²まで照射し、V_{Si}を形成した。 その後、真空中 600°Cで 30 分間の熱処理を行い、V_{Si}以外の不要な欠陥を低減した(Y. Chiba *et al.*, Mater. Sci. Forum 1004, 337 (2020).) 。Fig.1(a)は 3.0×10^{18} cm⁻²照射した試料の室温での ESR スペ クトルであり、(b)は室温 ESR 測定により定量した電子線照射量に対するV_{Si}濃度の変化を示して いる。V_{Si}起因の ESR 信号は電子線照射量に対し比例関係にあると考えV_{Si}収率を算出すると、未 熱処理試料では 5.7×10^{-3} cm⁻¹、熱処理試料では 3.6×10^{-3} cm⁻¹ となった。講演では、V_{Si}濃度 に対する ODMR スペクトル(磁気感度)の変化についても議論する。

[謝辞]

この成果は、「NEDO 先導研究プ ログラム/未踏チャレンジ 2050」に よる委託業務の結果得られたもの です。本研究の一部は MEXT Q-LEAP (JPMXS0118067395)、JSPS 科 研費 20H00355 の助成を受け実施さ れました。また、IAEA CRPF11020 の フレームワークの下で行われまし た。

function of electron dose. Data from Non-annealed and annealed samples are shown as yellow diamonds and red circles, respectively.