Li@C70の超原子分子軌道(SAMO)の直接計測(2)

Direct Observation of Superatom Molecular Orbitals (SAMOs) of Li@C₇₀ (2) 筑波大数理¹,東北大²,イデア・インターナショナル(株)³ [○]清水好葉¹,鶴田諒平¹ 佐々木正洋¹,北畠大樹²,河地和彦³,笠間泰彦³,美齊津文典²,上野裕²,山田洋一¹

Univ. Tsukuba¹, Tohoku Univ.², Idea Co Ltd.³ °K. Shimizu¹, M. Sasaki¹,

D. Kitabatake², K. Kawachi³, Y. Kasama³, F. Misaizu², H. Ueno² and Y. Yamada¹

E-mail: yamada@bk.tsukuba.ac.jp

[緒言] 分子周辺に大きく広がった超原子分子軌道(Superatom molecular orbitals, SAMOs)は、分 子固体中で自由電子的バンドを形成できるため、大きく注目されている。SAMO は通常真空準位 付近に存在するため、エレクトロニクスでの利用には、そのエネルギーの安定化が必要である。 我々はこれまで、Li@C₆₀単分子層の安定な SAMO の直接観察を行ってきた[1,2]。一方、C₆₀に比 べ、C₇₀では SAMO のエネルギーが 0.2 eV ほど低下することが予想されている[3]ことから、Li@C₇₀ の SAMO の評価は非常に重要である。本研究では新たに合成に成功した Li@C₇₀を用いてその単 分子層を C₇₀が秩序配列構造を持って並ぶとされる Cu(111)[4]上に製作した。その電子状態を STM による直接計測により評価したので報告する。

[実験] Li@C₇₀は、上野らにより合成され、[Li⁺@C₇₀] NTF₂-塩として単離されたものを用いた。 Li@C₇₀単分子層は、Cu(111) 表面上に[Li⁺@C₇₀] NTF₂-塩を真空蒸着することで作製した。

[結果と考察] Fig. 1 に、作製した Li@C₇₀ 薄膜の STM 像のバイアス依存性を示す。単分子層は Li@C₇₀ と Li が脱離した C₇₀の二種類の分子からなり、(a)は Li@C₇₀の LUMO+1、(b)は s-SAMO、(c)は p_z -SAMO を主に画像化していると考えられる。 (c)によると Li@C₇₀の p_z -SAMO が分子間に 非局在化していることがわかるが、これらは Li@C₆₀の報告例とほぼ同様である。

一方、Fig.2は、Li@C₇₀のアイランドにおける p_z -SAMO の空間分布を示す。この場合、非局在 化した SAMO に長周期の変調が見られた。Li@C₇₀では、Li@C₆₀の場合とは異なり、Li⁺の安定位 置が複数存在するため、Li⁺の内包位置の異なる分子が周期的に配列している可能性があり、これ が SAMO の長周期変調として現れているものと考えられる。このように Li@C₇₀では、分子間で の SAMO の相互作用が複数存在することから、薄膜の SAMO として様々な状態が実現する可能 性が示唆され、構造制御による SAMO エネルギーの制御が期待できる。

[4] X.-D. Wang, et al., *Phys. Rev. B* 49, 14746(1994).