Nanostructure control of 2D van der Waals Materials &-MoO3

The University of Tokyo,°(M1) Jiaqi Yang, Hitoshi Tabata and Hiroaki Matsui*

E-mail: yang@bioxide.t.u-tokyo.ac.jp, *hiroaki@ee.t.u-tokyo.ac.jp

Molybdenum oxides (MoO_x) are one of interesting oxides in various applications such as chemical catalysis, bio-sensing, and photovoltaic devices [1]. In particular, α -type MoO₃ (α -MoO₃) is known as a two-dimensional (2D) van der Waals material, which provides low-dimensional electrical and optical characteristics. Additionally, control of the reduction of Mo elements causes change in electronic states from transparent insulating to semi-metals, which produces highly tunable and versatile applications. So far, growth related to α -MoO₃ films

Pressure (O ₂)	Mo oxidation states (%)			
	Mo ^{+VI}	Mo ^{+V}	Mo ^{+IV}	Average formula
15 Pa	100%	_	_	MoO ₃
12.5 Pa	90.1%	9.9%	-	MoO _{2.95}
10 Pa	89%	11%	_	MoO _{2.94}
7.5 Pa	82.1%	17.9%	_	MoO _{2.91}
5 Pa	74.3%	25.7%	_	MoO _{2.87}
2.5 Pa	27%	59.1%	13.9%	MoO _{2.56}
1 Pa	19.2%	38.8%	41%	MoO _{2.37}
0.1 Pa	10.8%	42.3%	46.9%	MoO2.32

Table 1. XPS results for MoO_x nanostructured films on the stepped STO substrates.

and nanostructures are reported some papers [2]. However, studies of the controlled synthesis of α -MoO₃ films and nanostructures are still limited. In this presentation, we report on growth of α -MoO₃ nanostructured films and their related materials.

 α -MoO₃ nanostructured films were grown on TiO₂-terminated SrTiO₃ (100) substrates due to small lattice mismatch between α -MoO₃ (010) and SrTiO₃ (100) by pulsed laser deposition (PLD). The x-ray diffraction (XRD) revealed that the film sample grown under high O₂ pressure of 10 Pa showed a single crystal of α -MoO₃ along the [010] direction from the result of 2D reciprocal space mapping, which was also confirmed by μ -Raman scattering. Firstly, the effect of O₂ pressure on the chemical composition of MoO_x was investigated using x-ray photo-emission spectroscopy (XPS). The reduction of O₂ pressure from 15 Pa to 0.1 Pa provided remarkable change in valence states of Mo elements (Mo⁶⁺, Mo⁵⁺ and Mo⁴⁺) [Table 1]. Chemical ratios of the Mo⁵⁺ and Mo⁴⁺ states gradually increased with reducing O₂ pressure as a result of the decrease in the Mo⁶⁺ state. Besides, we observed morphologies on the film surfaces using scanning electron microscopy (SEM). The high O₂ pressures at 10 Pa clearly showed nano-needle structures. However, the decrease in O₂ pressure caused change in morphology from nano-needle structures to elongated nanowire structures. The sample grown under a low O₂ pressure of 0.1 Pa showed a smooth surface with a roughness of 5 nm. We succeeded to fabricate nanostructured films of α -MoO₃ under the high O₂ pressures by PLD. Hereafter, we will progress plasmonic biosensing applications based on MoO_x/MoO₃ nanostructures. MoO_x with low valence states of Mo elements has metallic properties in the visible range, which are expected for surface-enhanced Raman scattering (SERS).

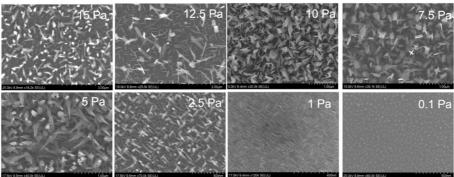


Figure 1. SEM results for MoOx nanostructured films on the stepped STO substrates.

Reference:

- de Castro I A, Datta R S, Ou J Z, et al. Molybdenum oxides-from fundamentals to functionality[J]. Advanced Materials, 2017, 29(40): 1701619.
- [2] Gao Q, Wang S, Fang H, et al. One-dimensional growth of MoOx-based organic–inorganic hybrid nanowires with tunable photochromic properties[J]. Journal of Materials Chemistry, 2012, 22(11): 4709-4715.