AIN/Al_{0.5}Ga_{0.5}N ヘテロ界面へのスパッタ再成長高濃度縮退 n⁺-GaN

オーミックコンタクトの形成

Fabrication of sputtering-regrown highly degenerate n⁺-GaN ohmic contacts on AlN/Al_{0.5}Ga_{0.5}N heterostructure

東京大学生産技術研究所 ⁰前田亮太,西川祐人,上野耕平,小林篤,藤岡洋

IIS, UTokyo, °Ryota Maeda, Yuto Nishikawa, Kohei Ueno, Atsushi Kobayashi, Hiroshi Fujioka E-mail: rmaeda@iis.u-tokyo.ac.jp

【背景】AlGaN 混晶に誘起される二次元電子ガス(2DEG)を利用した高電子移動度トランジスタ (AlGaN HEMT)は次世代高耐圧高周波デバイスへの応用が期待されている[1-3]。特に AlN をバリ ア層に用いた AlGaN HEMT では、2DEG 密度の増大、高耐圧化が期待される。しかしながら、AlN バリア層は熱的化学的安定性が高いため金属アロイオーミックコンタクトの形成が困難である。 また AlGaN チャネル層の Al 組成が増加すると電子親和力が減少し、2DEG への良好なオーミッ ク接触の形成が本質的に困難となる[3]。このような課題に対して、我々は、電子親和力の小さい 高濃度縮退 n 型 GaN (degenerate GaN: d-GaN) 薄膜を AlGaN HEMT のソース・ドレイン領域にス パッタエピ成長することで接触抵抗の低減に取り組んできた。[4] 今回、スパッタ法により形成 した d-GaN 再成長コンタクトを用いると Al 組成の比較的高い AlN/Alo₅Gao₅N HEMT 構造に対し ても、十分に低い接触抵抗を実現できることをみいだしたので、その詳細について報告する。

【実験方法】スパッタ法により AIN テンプレート基板上に AIN をホモエピタキシャル成長した 後、チャネル層として Al_{0.5}Ga_{0.5}N 層を 130 nm、また、バリア層として AIN を 25 nm 堆積した。 その後、フォトリソグラフィにより TLM 測定用のパターンを描画し、オーミック電極領域の AIN バリア層を ICP ドライエッチングにより除去した。露出した Al_{0.5}Ga_{0.5}N 上に SiO₂ マスクを用い たエピ・ポリ同時成長によりシート抵抗が 15 Ω/□、電子濃度が 2.6×10²⁰ cm⁻³ の n⁺-GaN 領域を 形成した。最後に EB 蒸着によりオーミック電極として Ti/Al/Ti/Au を堆積した。

【結果と考察】再成長コンタクトの接触抵抗は、図1に示す ように n⁺-GaN と Ti/Al/Ti/Au 電極界面の接触抵抗(R_1)、n⁺-GaN の抵抗(R_2)、n⁺-GaN と 2DEG の接触抵抗(R_3)の3 種類に分け られる。2 種類の TLM パターンを用いて、 R_1 =0.12 Ω mm、 R_1 + R_2 + R_3 =0.43 Ω mm と決定した。 R_2 は n⁺-GaN のシート抵抗をも とに 0.09 Ω mm と計算した。これらの結果から n⁺-GaN と 2DEG との接触抵抗は R_3 =0.22 Ω mm の値が得られた。これは AlGaN HEMT としては極めて低い接触抵抗であり、スパッタ法によ り形成した d-GaN 再成長コンタクトは、AlGaN を用いた高耐 圧高周波電子デバイスの低抵抗化に有望であることが分かっ た。当日は d-GaN 再成長コンタクトの接触抵抗の温度依存性 についても報告する。

Fig.1 Schematic of the sputteringregrown contact on AlN/AlGaN HEMT

【謝辞】本研究の一部は JST A-STEP(JPMJTR201D)および JSPS 科研費(JP19K05292)の助成を受けて行われたものである。

【参考文献】[1] T. Nanjo *et al.*, Appl. Phys. Lett. **92**, 263502 (2008). [2] S. Hashimoto *et al.*, Phys. Stat. Sol. (a) **209**, 501 (2012). [3] A. G. Baca *et al.*, Appl. Phys. Lett. **109**, 033509 (2016). [4]前田他、第 13 回 ナノ構造・エピタキシャル成長講演会 2020 年 12 月 Fr-P08