Si-APD 二光子吸収応答による Incoherent OFDR 法とFBG 計測応用

Incoherent OFDR using two-photon absorption process in Si-APD and its application to FBG sensing

農工大工, ⁰佐藤 凌介, 高木 伶菜, 齋藤 樹, 園田 直弘, 趙 世華, 田中 洋介

Tokyo Univ. of Agri. & Tech., [°]Ryosuke Sato, Reina Takagi, Itsuki Saito, Naohiro Sonoda, Shihua Zho, Yosuke Tanaka

E-mail: tyosuke@cc.tuat.ac.jp

1. はじめに

光ファイバセンシングは、小型、柔軟、電磁雑音耐性な どの利点から様々な手法が検討されている。その中で、 FBG(fiber Bragg grating)を利用したセンシングは代表的 な手法の一つで、構造ヘルスモニタリングや医療分野等 に応用されている[1,2]。これらは FBG の Bragg 波長変化 から歪みや温度変化を計測する。一般に、多点 FBG セン シングでは反射スペクトルが重ならないよう、異なる Bragg 波長の FBG を用いる。この場合、光源の帯域または波長 掃引範囲の制限により、設置可能な FBG の数が限られる。 FBG の反射スペクトルに重なりがあっても識別できるよう、 我々は FBG の位置と反射スペクトルの同時計測手法を検 討してきた[1-4]。この手法は、Si-APD の二光子吸収応答 から光信号の強度相関が受光側で複雑な高周波回路な しに計測可能なことを利用している。

今回、プローブ光と参照光にチャープ信号で強度変調 を加える incoherent OFDR (I-OFDR)法と Si-APD 二光子 吸収応答を使った多点 FBG センシングの原理確認を行 ったので報告する。

2. 原理確認実験

Fig.1 に実験系を示す。多点 FBG 計測の原理確認のため、各コアの Bragg 波長がほぼ等しいマルチコア FBG (MCFBG)のうち3つのコアの FBG を用いた。プローブ光 と参照光には、波長 1.55 μm のレーザ光源 LD1、LD2を 用い、強度変調器 IM1, IM2 により同じチャープ信号で強 度変調した。チャープ変調されたプローブ光は3分岐され、 MCFBG の各コアに導かれる。ここで、3つの光路長はそ れぞれ異なるようにした。各コアの FBG で反射したプロー ブ光はサーキュレータ通過後、参照光と合波され、 Si-APD に入射する。通常 Si-APD は 1.55 μm 帯の光に感 度を持たないが、高強度の光を入射すると二光子吸収応 答により、光強度の二乗平均に応じた光電流が発生する。 Si-APD に入射するプローブ光のうち、参照光との光路長 差が ΔL の成分の強度は

$$I_{\rm pr}(t) = I_1 \left(1 + a \sin \left[2\pi f \left(t - \frac{n\Delta L}{c} \right) \cdot \left(t - \frac{n\Delta L}{c} \right) \right] \right), \quad (1)$$

参照光強度は

$$I_{\rm ref}(t) = I_2(1 + bsin[2\pi f(t)t]),$$
(2)

で与えられる。ここで I_1 、 I_2 は平均光強度、a、bは変調度、nはファイバの屈折率、 ΔL はプローブ光と参照光の光路 差、cは光速を表す。また、チャープ変調周波数f(t)は、

$$f(t) = f_0 + \frac{2f_d t}{T} \left(-\frac{T}{2} \le t \le \frac{T}{2} \right), \qquad f(t + mT) = f(t).$$
(3)

である。Si-APD の遮断周波数より高周波な成分は抑圧さ

れる結果、二光子吸収応答による光電流は

$$i(t) \propto I_1^2 + I_2^2 + I_1 I_2 abcos\left[\frac{4\pi n\Delta L f_d}{cT}t + \Phi\right]$$
$$\left(mT + \frac{n\Delta L}{c} \le t \le (m+1)T\right)$$
(4)

となり、光路長差に比例した周波数成分の信号が得られる。し たがって、周波数スペクトルから反射点の位置がわかる。また、 スペクトル強度は反射率に比例するため、波長を同時掃引す れば反射スペクトルがわかる。本実験では、MCFBG に曲げ歪 みを与え、二光子吸収電流をリアルタイムスペクトラムアナライ ザ(RSA)で観測し、パソコンで信号処理を行った。また、計測 に際し、光源波長も掃引した。Fig.2 にRSA で取得したスペクト ルを示す。曲げ歪みによる Bragg 波長の変化がピーク出現の タイミング変化として観測されている。また、歪みがなく、ピーク が重なっていたときにも、これらを識別することに成功した。

Fig.1 Experimental setup of FBG sensing based on I-OFDR using two-photon absorption process in Si-APD.

Fig.2 Observed spectra of FBG (a) without and (b) with strain.

3. まとめ

Si-APDの二光子吸収応答を用いた I-OFDRを提案し、多点 FBG 計測応用の原理確認を行った。今後は、本手法を利用し た曲げ計測を検討する。

謝辞

本研究は科学研究費補助金(JP20H02158, JP 21KK0067)の支援を受けた。

参考文献

- Y. Tanaka, M. Nemoto, Y. Yamada, J. Lightwave Technol. 36, 1192-1196 (2017).
- [2] Y. Tanaka, H. Miyazawa, J. Lightwave Technol., 36 1032-1038 (2017).
- [3] N. Sonoda, R. Takagi, I. Saito, T. Abe, S. Zhao, Y. Tanaka, *IEEE Sensors Journal*, 21, 25736-25742 (2021).
- [4] S. Zho, N. Sonoda, R. Takagi, I. Saito, T. Abe, T. Wakayama, Y. Tanaka, *Proc. SPIE* 11914, 119140A (2021).