Time-of-Flight detection system at MALT and its performance Li Zheng, Hiroyuki Matsuzaki, Takeyasu Yamagata Tokyo Univ., Micro Analysis Laboratory, Tandem accelerator E-mail: zhengutokyo@gmail.com

Currently, accelerator mass spectrometry (AMS) is the most sensitive technique to measure 236 U with its absolute elimination of molecular interference. Due to small energy difference among 235 U, 236 U and 238 U, it is difficult to completely identify 236 U from 235 U and 238 U with the characteristic of energy deposition difference in a gas detector or semiconductor detector. With the distinct velocity difference of 235 U, 236 U and 238 U in a nearly identified energy, it is visible to use time-of-flight (TOF) technique to separate them. A TOF detection system for the measurement of 236 U AMS has been set up at Micro Analysis Laboratory, Tandem accelerator (MALT), The University of Tokyo. As a first test of the system, 3 standards with 10⁻⁵, 10⁻⁸ and 10⁻¹¹ of 236 U/ 238 U have been measured by TOF detection system. The measured results have shown an unambiguous separation for 236 U from the interference of 235 U and 238 U, which improve the sensitivity of 236 U/ 238 U from 3×10^{-10} to 6×10^{-12} . The time resolution of 1 ns has been achieved by TOF detection system, which makes a high resolution to separate 236 U from 235 U and 238 U. The experimental results are highly consistent with Geant4 Monte Carlo simulation results, which demonstrate that this simulation can provide a prediction for experiment. The results of Geant4 Monte Carlo simulation demonstrate that the thinner carbon foil, the better efficiency and time resolution.