Synthesis of Ruddlesden-Popper type Sr₃Cr₂O₇ epitaxial thin films Dept. Chem., Tohoku Univ.¹, AIMR, Tohoku Univ.² [°]Zhaochen Ma¹, Daichi Oka¹, Tomoteru Fukumura^{1,2} E-mail: ma.zhaochen.p2@dc.tohoku.ac.jp

Ruddlesden-Popper type perovskite oxides $A_{n+1}B_nO_{3n+1}$ have been intensively studied because of their varieties of physical properties stemming from the layered structure and tunable composition. Among them, Sr₃Cr₂O₇ is an antiferromagnetic Mott insulator with a characteristic singlet orbital ordering based on the spin and orbital degrees of freedom [1]. In addition, its superconductivity was theoretically predicted for the 3d² electronic state [2]. However, Sr₃Cr₂O₇ has been scarcely synthesized because high temperature and pressure are necessary, in general. In this study, we developed a synthetic route of *c*-axis oriented Sr₃Cr₂O₇ epitaxial thin film with high crystallinity by pulsed laser deposition (PLD).

A high-density $Sr_3Cr_2O_8$ pellet synthesized by spark plasma sintering was adopted as a PLD target and ablated by KrF excimer laser ($\lambda = 248$ nm). The $Sr_3Cr_2O_7$ films were synthesized on (LaAlO₃)_{0.3}(SrAl_{0.5}Ta_{0.5}O₃)_{0.7} (LSAT; lattice mismatch: 1.0%) (100) and SrTiO₃ (STO; lattice mismatch: 1.9%) (100) single crystal substrates at substrate temperatures of 800 °C and 815 °C, respectively, in Ar

atmosphere, which is beneficial for reducing the oxidation state of Cr ion from 5+ to 4+ [3].

In the X-ray diffraction (XRD) θ –2 θ patterns, only 00/ diffractions without any impurity peak were observed for the Sr₃Cr₂O₇ thin films on both LSAT and STO substrates (Fig. 1). Epitaxial growth of the Sr₃Cr₂O₇ thin films were confirmed by the 10<u>17</u> spot peaks in reciprocal space mapping. Sharp rocking curves around the 00<u>10</u> peak with full width at half maximum of 0.030° and 0.46° were observed for the thin films on LSAT and STO substrates, respectively, indicating good crystallinity. For the thin film on LSAT, particularly, an atomically flat surface with a step-and-terrace structure was observed (Fig. 2). These results indicated first successful synthesis of high-quality Sr₃Cr₂O₇ epitaxial thin films.

[1] J. Jeanneau et al., Phys. Rev. Lett. 118, 207207 (2017).

[2] D. Ogura et al, Phys. Rev. B 96, 184513 (2017).

[3] S. Fukuda et al., Appl. Phys. Lett. 116, 123101 (2020).

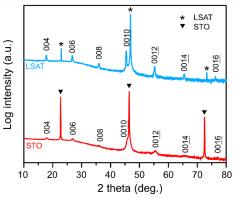


Fig. 1. X-ray diffraction θ -2 θ patterns for Sr₃Cr₂O₇ epitaxial thin films on LSAT (100) and STO (100) substrates.

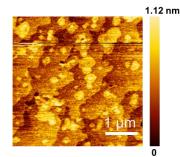


Fig. 2. Atomic force microscope image for $Sr_3Cr_2O_7$ epitaxial thin film on LSAT (100) substrate.