走査ダイヤモンド NV 中心プローブの開発と磁気カードの漏洩磁場解析

Development of a scanning diamond NV center probe

and analysis of stray magnetic fields from a magnetic card

北陸先端大¹, アダマンド並木精密宝石株式会社² ⁰(M2) 舘岡 千椰佳¹, Kumar Pawan¹,

(M2)出口 碧惟¹, 金 聖祐², 小山 浩司², 林 都隆¹, (D)貝沼 雄太¹, 安 東秀¹

JAIST¹, Adamant Namiki Precision Jewel Co., Ltd.², ^oChiyaka Tachioka¹, Pawan Kumar¹,

Aoi Ideguchi¹, Seong-Woo Kim², Koji Koyama², Kunitaka Hayashi¹, Yuta Kainuma¹, Toshu An¹

E-mail: c_tachioka@jaist.ac.jp

本研究は、開発したダイヤモンド NV 中心(窒素-空孔複合中心)プローブ(Fig.1(a)-(c))の性能評価 と磁性体(磁気カード)の磁気構造の特定を目的として行った。プローブに用いたダイヤモンドの形 状は先端径が約 4 µm のピラー形状(Fig.1(c))[1]で、先端にはイオン注入法(¹⁴N₂+, 1×10¹²/cm², 30 keV,加熱 900 °C,1h)によって NV 中心が作成されている。このプローブに外部磁場を印加した際 に計測したゼーマン分裂を Fig.1(d)と Fig.1(e)に示す。このプローブは、水晶振動子型原子間力顕 微鏡(AFM)と共焦点レーザー顕微鏡の複合装置に取り付けて用い、磁気カード表面の AFM による トポグラフ像(Fig.1(g))と NV 中心による光学的磁気共鳴スペクトル(ODMR)を同時に測定した。こ の計測では、それぞれの場所において ODMR スペクトル(Fig.1(f))が得られ、蛍光強度マッピング (Fig.1(h),(i))を作成した。得られた蛍光強度マッピングの周波数による変化や空間分解能、磁気感 度、計測時間の短縮方法、磁気構造の推定などについて議論する[2]。

Fig. 1 (a) The scanning diamond NV center probe. (b) A diamond pillar hosting NV centers is attached to the tungsten tip wire end of a quartz tuning fork. (c) A diamond pillar with tip diameter of about 4 μm.
(d) ODMR spectra under applied static magnetic field and dispersion as a function of the magnetic field. (f) ODMR spectra at different positions (i)-(iii). Images of the AFM topography (g), mapping of florescence intensity at 2.802 GHz (h) and 2.866 GHz (i) of the ODMR spectra.

References : [1] S-W. Kim et al. Appl. Phys. Lett. 117, 202102 (2020)

[2] Y. Kainuma et al. J. Appl. Phys. 130, 243903 (2021)