Origin of the background signal in spin torque ferromagnetic resonance Kyoto Univ.¹ ^oMotomi Aoki¹, Yuichiro Ando¹, Ei Shigematsu¹, Ryo Ohshima¹, Teruya Shinjo¹, Masashi Shiraishi¹

E-mail: aoki.motomi.53r@st.kyoto-u.ac.jp

Spin-torque ferromagnetic resonance (ST-FMR) has been widely used for estimation of the spin Hall angle (SHA) of a nonmagnetic material (NM)¹. Figure 1 shows a typical measurement setup for the ST-FMR. DC voltage, V_{DC}, in a NM/ferromagnetic metal (FM) bilayer structure is measured under microwave irradiation. When we plot V_{DC} as a function of external magnetic field, B_{ext} , V_{DC} - B_{ext} curve is sum of symmetric and anti-symmetric Lorentzian functions around the ferromagnetic resonance (FMR) field. By analyzing this resonance curve, SHA can be quantitatively estimated.

Whereas most researches using ST-FMR have focused on the $V_{DC}-B_{ext}$ curve only around the FMR condition, background (BG) signals in the ST-FMR have been neglected because it does not affect curve fitting of the resonance spectrum. Figure 2 shows the V_{DC} - B_{ext} curve of a W(6 nm)/Co(1 nm) sample with microwave power, $P_{MW} = 5$ dBm, and microwave frequency, $f_{MW} = 9$ GHz. Large BG signal whose polarity changes with respect to the magnetization direction was observed. From B_{ext} , P_{MW} , f_{MW} , θ , temperature, and NM dependences, we conclude that the BG signal is produced by the spin-dependent unidirectional spin hall magnetoresistance², origin of which is the spin Hall effect of the NM and spin-dependent electron mobility of the FM³. Therefore, analysis of the BG signal also gives the value of the SHA, which enables effective crosscheck for estimation of the SHA using the ST-FMR method. In addition, given that the BG signal is proportional to y component of the magnetization, spin-orbit torque (SOT) magnetization switching can be detected. Figure 3 shows the signal of the SOT magnetization switching detected by using the BG signal. After initializing magnetization by large external magnetic field, B_{SET}, we measured difference in the BG signal, ΔV_{BG} , between before and after injecting pulse current. A clear hysteresis with a threshold current density, J_{PLS} , of 3×10^7 A/cm² was observed, which is consistent with the previous research on SOT switching via the spin Hall effect of W detected by using a magnetic tunnel junction⁴. ¹ L. Liu et al., Phys. Rev. Lett. **106**, 036601 (2011). ² M. Aoki et al., Phys. Rev. B **104**, 094401 (2021). ³C. O. Avci *et al.*, Nat. Phys. **11**, 570 (2015). ⁴ C. F. Pai *et al*, Appl. Phys. Lett. **101**, 1222404 (2012).

