精密 X 線回折法による高品質 EFG β-Ga₂O₃単結晶の格子定数の決定 Determination of Lattice Constants of High-quality Monoclinic β-Ga₂O₃ Single Crystals by Precise X-ray Diffraction Measurements 佐賀大院工¹

°(M2)ムヒドゥル イスラム チャマン¹, (D2)スダーン セイリープ¹, 嘉数 誠¹

Saga University¹ °(M2) Muhidul Islam Chaman¹, (D2) Sayleap Sdoeung¹, Makoto Kasu^{1*}, *E-mail: kasu@cc.saga-u.ac.jp

1. Introduction

Beta-Gallium Oxide $(\beta$ -Ga₂O₃) is an ultrawide bandgap semiconductor material that has a bandgap energy of about 4.5 eV and a breakdown electric field of about 8 MV/cm, which makes this material preferable for high-power electronic devices. To design the layered material for electronic devices, it is crucial to determine the accurate lattice parameters of the crystal.

In this study, we conducted the $2\theta/\omega$ scan for symmetric and asymmetric diffraction conditions and calculated the lattice parameters *a*, *b*, *c*, and β of the unit cell precisely.

2. Experimental Method

We measured un-doped (UID), Sn-doped, and Fe-doped EFG grown EFG grown (010) wafers. EFG grown (010) wafers were cut from bulk crystals and polished by the chemical mechanical polishing (CMP) technique. Here, a highresolution X-ray diffraction system (RIGAKU SmartLab) is used where Ge (440) 4-bounce monochromator is installed. $2\theta/\omega$ scan is performed for symmetric and asymmetric diffraction (in skew geometry) conditions; (020), (420), (022), (111) and ($\overline{1}$ 11), and used the following equations to find out the precise lattice constants:

$$\lambda = 2d \sin\theta_B \tag{1}$$

$$\frac{1}{d_{hkl}^2} = \frac{1}{\sin^2\beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2\beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl\cos\beta}{ac} \right) \quad (2)$$

We assumed CuK α_1 X-ray wavelength $\lambda = 1.5405929$ Å.

<u>3. Results and Discussion</u>

Fig. 1 (a) – (e) represents the $2\theta/\omega$ -scan results for (420), (020), (022), (111) and ($\overline{1}11$) diffractions respectively for the UID sample. From these

results, we calculated the values of d-spacing in Table. I for all the conditions and calculated the accurate lattice parameters a=12.23413923Å, b=3.039962730Å, c=5.800822962Å, and $\beta=103.6696273^{\circ}$ using the equations (1) and (2).

Table 1: Measured Bragg angle (θ_B) and obtained *d*-spacing for respective *hkl* diffractions of UID β -Ga₂O₃.

hkl	Bragg angle θ_B	d-spacing(Å)
020	30.44820°	1.519981365
420	34.69560°	1.353257688
022	35.15485°	1.337812118
111	17.58320°	2.549880302
1 11	16.73245°	2.675542096

Fig. 1 (a) – (e): $2\theta/\omega$ -scan results for 020, 420, 020, 022, 111 and $\overline{1}11$ diffraction conditions of EFG UID β -Ga₂O₃ sample.

References

[1] S. Geller, J. Chem. Phys. 33, 676 (1960).

[2] J. Åhman, G. Svensson, and J. Albertsson, Acta Cryst. Sect. C **52**, 1336 (1996).