OVPE 法によるサファイア及び Ga₂0₃ 基板上 β-Ga₂0₃ 結晶成長

Growth of Beta-Phase Ga₂O₃ Crystals on a Sapphire and Ga₂O₃ Substrates by OVPE Method

阪大院エ¹, 上智大理エ², 伊藤忠プラスチックス(株)³

^O今西 正幸¹, 小林 大也¹, 奥村 加奈子¹, 細川 敬介¹, 宇佐美 茂佳¹, 富樫 理恵², 秦 雅彦³, 森 勇介¹

1. Osaka Univ., 2. Sophia Univ., 3. Itochu Plastics Inc.

^oM. Imanishi¹, H. Kobayashi¹, K. Okumura¹, K. Hosokawa¹, S. Usami¹, R. Togashi², M. Hata³, Y. Mori¹

E-mail: imanishi@eei.eng.osaka-u.ac.jp

【はじめに】次世代パワーデバイス用の材料として SiC や GaN, Ga₂O₃ といったワイドギャップ 半導体が注目されている.特に, β-Ga₂O₃ は約 4.5 eV のバンドギャップを有することに加え,融液 成長法により低転位かつ 4 インチロ径のバルク基板が実現されていることから,高耐圧・低損失 パワーデバイス材料として期待されている.エピタキシャル成長技術についても,ハライド気相 成長(HVPE)法や有機金属気相成長法(MOVPE)法の研究開発が進められている^[1,2].

一方,我々はこれまでにオキサイド気相成長法(OVPE)法を用い,低転位 GaN 基板の開発を 行ってきた^[3]. 当該手法はIII属源として Ga₂O ガス,V族源としてアンモニアを利用するが,V属 源を酸化物に置き換えることでVI属源として供給し,Ga₂O₃結晶の成長も可能であると考えた.当 該手法では原料分子種に塩化物を用いず,より簡便な成長手法となりうる.そこで今回,VI属源 に H₂O ガスを利用した OVPE 法により Ga₂O₃結晶が成長可能か検証を行った.

【実験と結果】種結晶として(0001)面サファイア基板(12 mm×25 mm),(010)面 β -Ga₂O₃基板(1 inch)を用いた.III属源であるGa₂Oガスの生成にはGa金属とH₂Oガスの反応を用い、VI 属源にはH₂Oガスを用いた.成長温度を1150℃,成長時間を3h,成長速度を8µm/h程度とした. サファイア基板上に成長した結晶についてX線回折(XRD)測定(2 θ - ω スキャン)を行った結果をFig.1に示している.サファイア基板における0006回折の他,Ga₂O₃結晶からの201回折,402回折,及び603回折が得られたことから,(201)面 β -Ga₂O₃結晶が得られていることがわかった.

次に同条件を用い,(010) 面 Ga₂O₃ 基板上のホモエピタキシャル成長を試みた.得られた結晶 像,表面 SEM 像,及び断面 SEM 像をそれぞれ Fig.2(a),(b),及び(c)に示している.表面は鏡面で あった一方,SEM 像では c 軸に平行な筋状の凹凸が見られた.断面 SEM 像より,表面は(010) 面に対して約 13.6°傾斜した面で構成されており,(110) 面が出現していると考えている. 以上より,OVPE 法を用いて β-Ga₂O₃結晶を成長可能であることが示された.

Fig. 2 (a) Photograph of a OVPE β -Ga₂O₃ crystal grown on a β -Ga₂O₃ substrate, (b) the surface SEM image, and (c) the cross-sectional SEM image.

謝辞:本研究は JSPS 科研費 JP21K18910, JP19K15457 の助成を受けて行われた.

参考文献: [1] H. Murakami *et al.*, Appl. Phys. Express **8** (2015) 015503. [2] K. Goto *et al.*, Jpn. J. Appl. Phys. **60** (2021) 045505. [3] J. Takino *et al.*, Jpn. J. Appl. Phys. **60** (2021) 095501.