OVPE 法によるサファイア及び Ga₂O₃ 基板上 β -Ga₂O₃ 結晶成長

Growth of Beta-Phase Ga₂O₃ Crystals on a Sapphire and Ga₂O₃ Substrates by OVPE Method

阪大院工¹, 上智大理工², 伊藤忠プラスチックス(株)³

O今西 正幸¹,小林 大也¹,奥村 加奈子¹,細川 敬介¹,宇佐美 茂佳¹,富樫 理恵²,秦 雅彦³,森 勇介¹ 1. Osaka Univ., 2. Sophia Univ., 3. Itochu Plastics Inc.

°M. Imanishi¹, H. Kobayashi¹, K. Okumura¹, K. Hosokawa¹, S. Usami¹, R. Togashi², M. Hata³, Y. Mori¹ E-mail: imanishi@eei.eng.osaka-u.ac.jp

【はじめに】次世代パワーデバイス用の材料として SiC や GaN, Ga_2O_3 といったワイドギャップ 半導体が注目されている。特に、 β - Ga_2O_3 は約 $4.5\,\mathrm{eV}$ のバンドギャップを有することに加え、融液 成長法により低転位かつ 4 インチロ径のバルク基板が実現されていることから、高耐圧・低損失 パワーデバイス材料として期待されている。エピタキシャル成長技術についても、ハライド気相 成長(HVPE)法や有機金属気相成長法(MOVPE)法の研究開発が進められている[1.2]。

一方,我々はこれまでにオキサイド気相成長法(OVPE)法を用い,低転位 GaN 基板の開発を行ってきた $^{[3]}$. 当該手法は $^{[3]}$ 出該手法は $^{[3]}$ 以及 がス,V族源としてアンモニアを利用するが,V属源を酸化物に置き換えることで $^{[3]}$ 以間では原料分子種に塩化物を用いず,より簡便な成長手法となりうる。そこで今回,VI属源に $^{[3]}$ に対えを利用した OVPE 法により $^{[3]}$ 公前に表する。

【実験と結果】種結晶として(0001)面サファイア基板(12 mm×25 mm),(010)面 β -Ga₂O₃ 基板(1 inch)を用いた. III属源である Ga₂O ガスの生成には Ga 金属と H₂O ガスの反応を用い,VI 属源には H₂O ガスを用いた. 成長温度を 1150℃, 成長時間を 3h, 成長速度を 8 μ m/h 程度とした. サファイア基板上に成長した結晶について X 線回折(XRD)測定(2 θ - ω スキャン)を行った結果を Fig. 1 に示している. サファイア基板における 0006 回折の他,Ga₂O₃ 結晶からの $\overline{2}$ 01 回折, $\overline{4}$ 02 回折,及び $\overline{6}$ 03 回折が得られたことから,($\overline{2}$ 01) 面 β -Ga₂O₃ 結晶が得られていることがわかった.

次に同条件を用い、(010) 面 Ga_2O_3 基板上のホモエピタキシャル成長を試みた. 得られた結晶像,表面 SEM像,及び断面 SEM像をそれぞれ Fig. 2(a), (b), 及び(c)に示している. 表面は鏡面であった一方,SEM像では c 軸に平行な筋状の凹凸が見られた. 断面 SEM像より,表面は(010)面に対して約13.6° 傾斜した面で構成されており、(110) 面が出現していると考えている.

以上より、OVPE 法を用いて β -Ga₂O₃結晶を成長可能であることが示された.

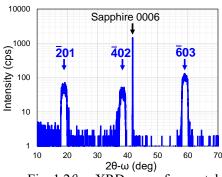
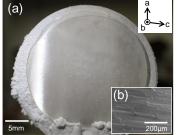



Fig. 1 2θ - ω XRD scan of a crystal grown on a sapphire substrate.

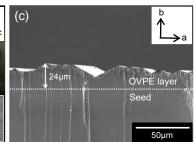


Fig. 2 (a) Photograph of a OVPE β -Ga₂O₃ crystal grown on a β -Ga₂O₃ substrate, (b) the surface SEM image, and (c) the cross-sectional SEM image.

謝辞: 本研究は JSPS 科研費 JP21K18910, JP19K15457 の助成を受けて行われた.

参考文献: [1] H. Murakami *et al.*, Appl. Phys. Express **8** (2015) 015503. [2] K. Goto *et al.*, Jpn. J. Appl. Phys. **60** (2021) 045505. [3] J. Takino *et al.*, Jpn. J. Appl. Phys. **60** (2021) 095501.