Investigation of Conduction Band Offset at *n*-Si/*n*-Ga₂O₃ Heterojunction Fabricated by Surface-Activated Bonding

°Zhenwei Wang¹, Daiki Takatsuki², Jianbo Liang², Takahiro Kitada¹,

Naoteru Shigekawa², Masataka Higashiwaki¹

National Institute of Information and Communications Technology¹, Osaka City University²

E-mail: zhenwei.wang@nict.go.jp

Introduction

For Ga₂O₃ power devices, fabricating heterojunctions with other materials is one of the possible solutions to compensate for shortcomings of the absence of *p*-type conductivity. Si/Ga2O3 heterojunctions are of special interest, owing to their complementary material properties. However, it is difficult to form high-quality heterojunctions between them by conventional epitaxial growth due to large mismatches in their lattice constants and thermal expansion coefficients. Surface-activated bonding (SAB) can be expected as an alternative method since it is room-temperature processable and thus has a high tolerance for the mismatches. At the last JSAP Autumn Meeting, $n-Si/n-Ga_2O_3$ heterojunctions fabricated by SAB were reported [1]. In this presentation, we report on investigation of the conduction band offset $(\Delta E_{\rm C})$ at the heterointerface based on the electrical properties.

Results

A schematic of the n-Si/n-Ga₂O₃ heterostructure is depicted in Fig. 1(a). Net donor densities of the Si and Ga₂O₃ layers were 2.0×10^{18} and 2.0×10^{17} cm⁻³, respectively. Rectifying current density-voltage (J-V)characteristics were obtained, suggesting an existence of an energy barrier in the electron transport path. The barrier height $(q\phi_b)$ was analyzed based on reverse-bias J-V characteristics in the measurement temperature range of 23°C–200°C. Note that in this study, only the thermionic emission process was considered for the $q\phi_b$ extraction since the tunneling process should be negligible due to thick depletion regions formed at both Si and Ga₂O₃ sides, which were associated with negatively charged interface states. Figure 1(b) plots estimated $q\phi_b$ as a function of reverse voltage (V_{rev}). The $q\phi_b$ decreased with decreasing V_{rev} and saturated at around 0.25 eV for $V_{\rm rev} < -9$ V.

The $q\phi_b$ saturation can be explained as follows. The $q\phi_b$ consists of ΔE_c , the built-in potential in Si $(qV_{bi,Si})$, and an energy difference between the Fermi level and the conduction band minimum of Si (δ_{Si}) as shown in Figs. 2(a) and 2(b). The ΔE_c and δ_{Si} are constant, while the

 $qV_{\text{bi,Si}}$ depends on V_{rev} . In the range of $-9 \text{ V} < V_{\text{rev}} < 0 \text{ V}$, the $qV_{\text{bi,Si}}$ gradually decreased with decreasing V_{rev} and became zero at $V_{\text{rev}} \sim -9 \text{ V}$, indicating that the flat-band condition was obtained in the Si at the $V_{\text{rev}} \sim -9 \text{ V}$ [Fig. 2(b)]. For further decreasing V_{rev} from -9 V, twodimensional electron gas could be formed at the heterointerface; as a result, the $q\phi_b$ stayed almost unchanged at $\Delta E_C + \delta_{\text{Si}}$. From the discussion, the ΔE_C was estimated to be 0.18 eV, considering $\delta_{\text{Si}} = 0.07 \text{ eV}$.

Acknowledgment

This work was supported in part by JSPS KAKENHI Grant Number 19H02182.

[1] Z. Wang, D. Takatsuki, J. Liang, N. Shigekawa, and M. Higashiwaki, the 82nd JSAP Autumn Meeting 2021, 13p-S201-5.

FIG. 1. (a) Schematic of *n*-Si/*n*-Ga₂O₃ heterostructure and (b) estimated $q\phi_b$ at its heterointerface as a function of V_{rev} .

FIG. 2. Schematic energy band diagrams of *n*-Si/*n*-Ga₂O₃ heterostructure at (a) $V_{rev} = 0$ V and (b) ~ -9 V.